
FEEG1201 Computing - Python for Engineering

Hans Fangohr

fangohr@soton.ac.uk
https://fangohr.github.io
@ProfCompMod@fosstodon.org

1

fangohr@soton.ac.uk
https://fangohr.github.io
https://fosstodon.org/@ProfCompMod


Outline

1. Introduction Computing & Computational Engineering

2. First steps with Python

3. Functions
4. About Python

5. Introspection (dir)

6. Conditionals, if-else

7. Style guide for Python code

8. Using modules

9. Sequences

10. Loops

11. Reading and writing files

12. str, repr and eval

2



13. Print
14. String formatting

15. Default function arguments

16. Keyword function arguments

17. List comprehension

18. Optimisation

19. Higher Order Functions

20. Common Computational Tasks

21. Scientific Python

22. Optimisation

23. Dictionary

24. Computing derivatives numerically

25. Root finding

26. Plotting data from csv file

27. Raising exceptions

3



28. Writing modules

29. Jupyter notebook

30. Numpy

31. Matplotlib

32. Curve fitting

33. Virtual Environments venv

34. Installing python packages with pip

35. Typing

36. Pandas

37. Testing

38. Symbolic Python (sympy)

4



Introduction Computing &
Computational Engineering



Computing

• use of computers to support research and operation in
science, engineering, industry and services

• applications include
• analysis of data
• data science / data analytics
• artificial intelligence (AI) & machine learning (ML)
• control
• computer simulations
• virtual design & optimisation

7



This course: Why Python?

• is relatively easy to learn [1]
• high efficiency: a few lines of code achieve a lot
• growing use in academia and industry, thus
• many relevant libraries available
• minimises the time of the programmer
• but: (naive) Python in general much slower execution than
compiled languages (such as Fortran, C, C++, Rust, …).

[1] https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157

8

https://link.springer.com/chapter/10.1007/978-3-540-25944-2_157


FEEG1201: Python computing

• introduces the foundations of Python programming
language

• focus on parts of Python language and libraries relevant
to engineering and design

• enable self-directed learning in the future

9



This course: practicalities

• 10 Lectures (this is lecture 1 [in teaching week 2])
• 9 computing laboratories (lab1 to be discussed in tw 3)

• sets of programming exercises
• (automatic) feedback available
• scheduled sessions
• this is the key learning activity

10



First steps with Python



Hello World program

• Our first Python program: Entered interactively in Python
prompt:

>>> print("Hello World")
Hello World

Or in Interactive Python (IPython) prompt:
In [1]: print("Hello world")
Hello world

• Python prompt (>>>) and IPython prompt (In [ ]:) are
very similar

• We prefer the more convenient IPython prompt (but the
slides usually show the more compact >>> notation)

11



∗Read-Eval-Print Loop (REPL)

The python and the IPython prompt are both examples for a
READ-EVAL-PRINT LOOP (REPL):

• Read (the command the user enters)
• Evaluate (the command)
• Print (the result of the evaluation)
• Loop (i.e. go back to the beginning and wait for next
command)

12



Integrated development environments (Spyder)

• You can write programs with a python prompt, a shell and
an editor

• More convenient is the use of an “Integrated Development
Environment” (IDE)

• Example IDEs: Spyder, Visual Studio Code, PyCharm, IDLE,
Emacs, …

• A python prompt is typically embedded in the IDE
• We use Spyder in this module

13



Everything in Python is an object (with a type)

>>> type("Hello World")
<class 'str'> # "Hello world" is a string

# 'class' means 'type'
>>> type(print)
<class 'builtin_function_or_method'>

>>> type(10)
<class 'int'> # 10 is an integer number

>>> type(3.5)
<class 'float'> # 3.5 is floating point number

# (floating point number: it has a decimal point)
>>> type('1.0')
<class 'str'> # string (because of the quotes)

>>> type(1 + 3j)
<class 'complex'> # complex number

14



Python prompt can act like a calculator

>>> 2 + 3
5
>>> 42 - 15.3
26.7
>>> 100 * 11
1100
>>> 2400 / 20
120
>>> 2 ** 3 # 2 to the power of 3
8
>>> 9 ** 0.5 # sqrt of 9
3.0

15



Create variables through assignment

>>> a = 10
>>> b = 20
>>> a # short cut for 'print(a)'
10
>>> b # short cut for 'print(b)'
20
>>> a + b # ...
30
>>> ab4 = (a + b) / 4
>>> ab4
7.5

16



Functions

• Example: print function

>>> print("Hello World")
Hello World

The print function takes an argument (here a string), and
does something with the argument. (Here printing the
string to the screen.)

• Example: abs function

>>> x = -100
>>> y = abs(x)
>>> print(y)
100

A function may return a value: the abs function returns
the absolute value (100) of the argument (-100). 17



The help function

The help(x) function provides documentation for object x.

Example:

>>> help(abs)
Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

18



Summary useful commands (introspection)

• print(x) to display the object x
Not needed at the prompt, but in programs that we will write later.

• type(x) to determine the type of object x
• help(x) to obtain the documentation string for object x
• To be introduced soon:

dir(x) to display the methods and members of object x,
or the current name space (dir()).

19



Functions



Defining a function ourselves

• Functions
• provide (potentially complicated) functionality
• are building blocks of computer programs
• hide complexity from the user of the function
• help manage complexity of software

• Example 1:
def mysum(a, b):

return a + b

# main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

20



Functions should be documented (“docstring”)

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

# main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

Can now use the help function for our new function:

>>> help(mysum)
Help on function mysum in module __main__:

mysum(a, b)
Return the sum of parameters a and b.

21



Function documentation strings

def mysum(a, b):
"""Return the sum of parameters a and b."""
return a + b

Essential information for documentation string:

• What inputs does the function expect?
• What does the function do?
• What does it return?

∗Desirable:

• Examples
• Notes on algorithm (if relevant)
• exceptions that might be raised
• [Author, date, contact details: not needed if version control is used]

LAB1

Advanced: Recommendations for documentation string style are numpydoc style or PEP257 docstring conventions.

22

https://numpydoc.readthedocs.io/en/latest/format.html
http://www.python.org/dev/peps/pep-0257/


Function documentation string example 1

def mysum(a, b):
"""Return the sum of parameters a and b.

Parameters
----------
a : numeric

first input
b : numeric

second input

Returns
-------
a+b : numeric

returns the sum (using the + operator) of a and b. The return type will
depend on the types of `a` and `b`, and what the plus operator returns.

Examples
--------
>>> mysum(10, 20)
30
>>> mysum(1.5, -4)
-2.5

Notes
-----
History: example first created 2002, last modified 2013
Hans Fangohr, fangohr@soton.ac.uk,
"""
return a + b

23



Function documentation string example 2

def factorial(n):
"""Compute the factorial recursively.

Parameters
----------
n : int

Natural number `n` > 0 for which the factorial is computed.

Returns
-------
n! : int

Returns n * (n-1) * (n-2) * ... * 2 * 1

Examples
--------
>>> factorial(1)
1
>>> factorial(3)
6
>>> factorial(10)
3628800
"""
assert n > 0

if n == 1:
return 1

else:
return n * factorial(n - 1) 24



Function terminology

Example abs(x) function:

x = -1.5
y = abs(x)

• x is the argument given to the function (also called input
or parameter)

• y is the return value (the result of the function’s
computation)

• Functions may expect zero, one or more arguments
• Not all functions (seem to) return a value. (If no return
keyword is used, the special object None is returned.)

25



Function example

def plus42(n):
"""Add 42 to n and return""" # docstring

result = n + 42 # body of
return result # function

# main program follows
a = 8
b = plus42(a)

After execution, b carries the value 50 (and a = 8).

26



Summary functions

• Functions provide (black boxes of) functionality:
crucial building blocks that hide complexity

• interaction (input, output) through input arguments and
return values
(printing and returning values is not the same, see slide 29)

• docstring provides the specification (contract) of the
function’s input, output and behaviour

• a function should (normally) not modify input arguments
(watch out for lists, dicts, more complex data structures as input arguments)

27



Functions printing vs returning values

Key message: functions should generally return values.

We use the Python prompt to explore the difference with these
two function definitions:

def print42():
print(42)

def return42():
return 42

28



>>> b = return42() # return 42, is assigned
>>> print(b) # to b
42

>>> a = print42() # return None, and
42 # print 42 to screen
>>> print(a)
None # special object None

29



If we use IPython, it shows whether a function returns
something (i.e. not None) through the Out [ ] token:

In [1]: return42()
Out[1]: 42 # Return value of 42

In [2]: print42()
42 # No 'Out [ ]', so no

# returned value

30



Summary: to print or to return?

• A function that returns the control flow through the
return keyword, will return the object given after return.

• A function that does not use the return keyword, returns
the special object None.

• Generally, functions should return a value.
• Generally, functions should not print anything.
• Calling functions from the prompt can cause some
confusion here: if the function returns a value and the
value is not assigned, it will be printed.

31



About Python



Python

What is Python?

• High level programming language
• interpreted
• supports three main programming styles
(imperative=procedural, object-oriented, functional)

• General purpose tool, yet good for numeric work with
extension libraries

Availability

• Python is free
• Python is platform independent (works on Windows,
Linux/Unix, Mac OS, …)

• Python is open source
32



Python documentation

There is lots of documentation that you should learn to use:

• Teaching materials on website, including these slides and
a text-book like document

• Online documentation, for example
• Python home page (http://www.python.org)
• Matplotlib (publication figures)
• Numpy (fast vectors and matrices, (NUMerical PYthon)
• SciPy (scientific algorithms, solve_ivp)
• SymPy (Symbolic calculation)
• Pandas (wrangling and analysing tabular data)

• interactive documentation (help())

33

https://fangohr.github.io/teaching/python/book.html
http://www.python.org
https://matplotlib.org/
https://numpy.org/
https://scipy.org/
https://sympy.org/
https://pandas.pydata.org/


Which Python version

• We use Python 3.
• For non-maintained software, Python 2.7 is still in use
• Python 2.x and 3.x are incompatible although the changes
only affect very few commands.

• For this course, Python 3.10 or more recent is sufficient
(3.12 preferred in August 2024).

34



Introspection (dir)



The directory function (dir)

• Everything in Python is an object.
• Python objects have attributes.
• dir(x) returns the attributes of object x
• Example:

>>> c = 2 + 1j
>>> dir(c) # we ignore attributes starting with __
[ ... 'conjugate', 'imag', 'real']
>>> c.imag
1.0
>>> c.real
2.0
>>> c.conjugate()
(2-1j)

35



Attributes of objects can be functions

Example:

>>> c = 2 + 1j
>>> dir(c)
[ ... 'conjugate', 'imag', 'real']
>>> type(c.real)
<class 'float'>
>>> type(c.conjugate)
<class 'builtin_function_or_method'>

To execute a function, we need to add () to their name:

>>> c.conjugate # this is the function object
<built-in method conjugate of complex object at 0x10a95f3d0>
>>> c.conjugate() # this executes the function
(2-1j) # return value of conjugate function

An object attribute that is a function, is called a method. 36



Introspection example with string

>>> word = 'test'
>>> print(word)
test
>>> type(word)
<class str>
>>> dir(word)
['__add__', '__class__', '__contains__', ...,
'__doc__', ..., 'capitalize', <snip>,
'endswith', ..., 'upper', 'zfill']
>>> word.upper()
'TEST'
>>> word.capitalize()
'Test'
>>> word.endswith('st')
True
>>> word.endswith('a')
False

37



Conditionals, if-else



Truth values

The python values True and False are special inbuilt objects:

>>> a = True
>>> print(a)
True
>>> type(a)
<class bool>
>>> b = False
>>> print(b)
False
>>> type(b)
<class bool>

38



We can operate with these two logical values using boolean
logic, for example the logical and operation (and):

>>> True and True # logical and operation
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

39



There is also logical or (or) and the negation (not):

>>> True or False
True
>>> not True
False
>>> not False
True
>>> True and not False
True

40



In computer code, we often need to evaluate some expression
that is either true or false (sometimes called a “predicate”).
For example:

>>> x = 30 # assign 30 to x
>>> x >= 30 # is x greater than or equal to 30?
True
>>> x > 15 # is x greater than 15
True
>>> x > 30
False
>>> x == 30 # is x the same as 30?
True
>>> not x == 42 # is x not the same as 42?
True
>>> x != 42 # is x not the same as 42?
True

41



if-then-else

The if-else command allows to branch the execution path
depending on a condition. For example:

>>> x = 30 # assign 30 to x
>>> if x > 30: # predicate: is x > 30
... print("Yes") # if True, do this
... else:
... print("No") # if False, do this
...
No

42



The general structure of the if-else statement is

if A:
B

else:
C

where A is the predicate.

• If A evaluates to True, then all commands B are carried
out (and C is skipped).

• If A evaluates to False, then all commands C are carried
out (and B) is skipped.

• if and else are Python keywords.

A and B can each consist of multiple lines, and are grouped
through indentation as usual in Python.

43



if-else example

def slength1(s):
"""Returns a string describing the
length of the sequence s"""
if len(s) > 10:

ans = 'very long'
else:

ans = 'normal'

return ans

>>> slength1("Hello")
'normal'
>>> slength1("HelloHello")
'normal'
>>> slength1("Hello again")
'very long'

44



if-elif-else example

If more cases need to be distinguished, we can use the
keyword elif (standing for ELse IF) as many times as desired:

def slength2(s):
if len(s) == 0:

ans = 'empty'
elif len(s) > 10:

ans = 'very long'
elif len(s) > 7:

ans = 'normal'
else:

ans = 'short'

return ans

45



>>> slength2("")
'empty'
>>> slength2("Good Morning")
'very long'
>>> slength2("Greetings")
'normal'
>>> slength2("Hi")
'short'

46



Style guide for Python code



Syntax versus style

• Python programs must follow Python syntax.
• Python programs should follow Python style guide,
because

• readability is key (debugging, documentation, team effort)
• conventions improve effectiveness

47



Common style guide: PEP8

From http://www.python.org/dev/peps/pep-0008/:

• This style guide evolves over time as additional conventions are
identified and past conventions are rendered obsolete by
changes in the language itself.

• ”Readability counts”: One of Guido van Rossum’s key insights is
that code is read much more often than it is written. The
guidelines provided here are intended to improve the
readability of code and make it consistent across the wide
spectrum of Python code.

48

http://www.python.org/dev/peps/pep-0008/


PEP8 Style guide

• Indentation: use 4 spaces
• One space around assignment operator (=) operator:
c = 5 and not c=5.

• Spaces around arithmetic operators can vary. Both
x = 3*a + 4*b and x = 3 * a + 4 * b are okay.

• No space before and after parentheses:
x = sin(x) but not x = sin( x )

• A space after comma: range(5, 10) and not range(5,10).
• No whitespace at end of line
• No whitespace in empty line
• One or no empty line between statements within function

49



• Two empty lines between functions

• One import statement per line

• import first standard Python library (such as math), then
third-party packages (numpy, scipy, ...), then our own
modules

• no spaces around = when used in keyword arguments:
"Hello World".split(sep=' ') but not
"Hello World".split(sep = ' ')

50



PEP8 Style Summary

• Follow PEP8 guide, in particular for new code.
• Use tools to help us:

• Spyder editor can show PEP8 violations (In Spyder 6:
Preferences → Completion and Linting → Code style
and formatting → [X] Enable code style lintiing →
[OK])

• Similar tools/plugins are available for other editors.
editors.

• pycodestyle program available to check source code from
command line (used to be called pep8 in the past).
To check file myfile.py for PEP8 compliance:
pycodestyle myfile.py

51



∗Style conventions for documentation strings

• Python documentation strings (pydoc) conventions:
• PEP257 docstring style (from 2001), basis for both
• numpydoc style (science) and
• Google pydoc style

• Examples on slide 23 and 24 are compatible with all
conventions

• Editors can highlight deviations
• Program to check documentation string style compliance
in file myfile.py:

• pydocstyle --convention=pep257 myfile.py
• pydocstyle --convention=numpy myfile.py
• pydocstyle --convention=google myfile.py

52

http://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html
https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings


Using modules



The math module (import math)

>>> import math
>>> math.sqrt(4)
2.0
>>> math.pi
3.141592653589793
>>> dir(math) #attributes of 'math' object
['__doc__', '__file__', < snip >
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'ceil', 'copysign', 'cos', 'e', 'erf',
'exp', <snip>, 'sqrt', 'tan', 'tanh', 'trunc']

>>> help(math.sqrt) # ask for help on sqrt
sqrt(...)

sqrt(x)
Return the square root of x.

53



Name spaces and modules

Three (good) options to access a module:

1. use the full name:
import math
print(math.sin(0.5))

2. use some abbreviation
import math as m
print(m.sin(0.5))
print(m.pi)

3. import all objects we need explicitly
from math import sin, pi
print(sin(0.5))
print(pi)

54



Modules provide functionality

• each module provides some additional python
functionality

• Python has many modules:
• Python Standard Library: math, pathlib, sys, …
• Contributions from others: numpy, jupyter, pytest, …
• Every programmer can create their own modules.

• there is distinction between module, package, and library
but in practice the terms are used interchangeably.

LAB2

55



Sequences



Sequences overview

Different types of sequences

• strings
• lists (mutable)
• tuples (immutable)
• arrays (mutable, part of numpy)

They share common behaviour.

56



Strings

>>> a = "Hello World"
>>> type(a)
<class str>
>>> len(a)
11
>>> print(a)
Hello World

Different possibilities to limit strings:

'A string'
"Another string"
"A string with a ' in the middle"
"""A string with triple quotes can
extend over several
lines"""

57



Strings 2 (exercise)

• Define a, b and c at the Python prompt:
>>> a = "One"
>>> b = "Two"
>>> c = "Three"

• Exercise: What do the following expressions evaluate to?
1. d = a + b + c
2. 5 * d
3. d[0], d[1], d[2] (indexing)
4. d[-1]
5. d[4:] (slicing)

58



Strings 3 (exercise)

>>> s="""My first look at Python was an
... accident, and I didn't much like what
... I saw at the time."""

For the string s:

• count the number of (i) letters ’e’ and (ii) substrings ’an’
• replace all letters ’a’ with ’0’
• make all letters uppercase
• make all capital letters lowercase, and all lower case
letters to capitals

59



Lists

[] # the empty list
[42] # a 1-element list
[5, 'hello', 17.3] # a 3-element list
[[1, 2], [3, 4], [5, 6]] # a list of lists

• Lists store an ordered sequence of Python objects
• Access through index (and slicing) as for strings.
• use help(), often used list methods is append()

(In general computer science terminology, vector or array might be better name as the

actual implementation is not a linked list, but direct O(1) access through the index is

possible.)

60



Example program: using lists

>>> a = [] # creates a list
>>> a.append('dog') # appends string 'dog'
>>> a.append('cat') # ...
>>> a.append('mouse')
>>> print(a)
['dog', 'cat', 'mouse']
>>> print(a[0]) # access first element
dog # (with index 0)
>>> print(a[1]) # ...
cat
>>> print(a[2])
mouse
>>> print(a[-1]) # access last element
mouse
>>> print(a[-2]) # second last
cat

61



Example program: lists containing a list

>>> a = ['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a
['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a[0]
dog
>>> a[3]
[1, 10, 100, 1000]
>>> max(a[3])
1000
>>> min(a[3])
1
>>> a[3][0]
1
>>> a[3][1]
10
>>> a[3][3]
1000

62



Sequences – more examples

>>> a = "hello world"
>>> a[4]
'o'
>>> a[4:7]
'o w'
>>> len(a)
11
>>> 'd' in a
True
>>> 'x' in a
False
>>> a + a
'hello worldhello world'
>>> 3 * a
'hello worldhello worldhello world'

63



Tuples

• tuples are very similar to lists
• tuples are immutable (unchangeable after they have been
created) whereas lists are mutable (changeable)

• tuples are usually written using parentheses (↔ “round
brackets”):
>>> t = (3, 4, 50) # t for Tuple
>>> t
(3, 4, 50)
>>> type(t)
<class tuple>

>>> L = [3, 4, 50] # compare with L for List

64



>>> L
[3, 4, 50]
>>> type(L)
<class list>

65



Tuples are defined by comma

• tuples are defined by the comma (!), not the parenthesis
>>> a = 10, 20, 30
>>> type(a)
<class tuple>

• the parentheses are usually optional (but should be
written anyway):
>>> a = (10, 20, 30)
>>> type(a)
<class tuple>

66



Tuples are sequences

• normal indexing and slicing (because tuple is a sequence)
>>> t[1]
4
>>> t[:-1]
(3, 4)

67



Why do we need tuples (in addition to lists)?

1. use tuples if you want to make sure that a set of objects
doesn’t change.

2. Using tuples, we can assign several variables in one line
(known as tuple packing and unpacking)
x, y, z = 0, 0, 1
This allows “instantaneous swap” of values:

a, b = b, a

Strictly: “tuple packing” on right hand side and “sequence unpacking” on left.

68



3. functions return tuples if they return more than one
object
def f(x):

return x**2, x**3

a, b = f(x)

4. tuples can be used as keys for dictionaries as they are
immutable

69



(Im)mutables

• Strings — like tuples — are immutable:
>>> a = 'hello world' # String example
>>> a[3] = 'x'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: object does not support item assignment

• strings can only be ’changed’ by creating a new string, for
example:
>>> a = a[0:3] + 'x' + a[4:]
>>> a
'helxo world'

70



Summary sequences

• lists, strings and tuples (and arrays) are sequences.
• sequences share the following operations

a[i] returns element with index i of a
a[i:j] returns elements i up to j− 1
len(a) returns number of elements in sequence
min(a) returns smallest value in sequence
max(a) returns largest value in sequence
x in a returns True if x is element in a
a + b concatenates a and b
n * a creates n copies of sequence a

In the table above, a and b are sequences, i, j and n are
integers, x is an element.

71



Conversions

• We can convert any sequence into a tuple using the tuple
function:
>>> tuple([1, 4, "dog"])
(1, 4, 'dog')

• Similarly, the list function, converts sequences into lists:
>>> list((10, 20, 30))
[10, 20, 30]

• Looking ahead to iterators, we note that list and tuple can
also convert from iterators:
>>> list(range(5))
[0, 1, 2, 3, 4]

• ∗And if you ever need to create an iterator from a sequence, the
iter function can this:
>>> iter([1, 2, 3])
<list_iterator object at 0x1013f1fd0> 72



Loops



Introduction loops

Computers are good at repeating tasks (often the same task
for many different sets of data).

Loops are the way to execute the same (or very similar) tasks
repeatedly (“ in a loop”).

Python provides the “for loop” and the “while loop”.

73



Example program: for-loop

animals = ['dog', 'cat', 'mouse']

for animal in animals:
print(f"This is the {animal}!")

produces

This is the dog!
This is the cat!
This is the mouse!

The for-loop iterates through the sequence animals and
assigns the values in the sequence subsequently to the name
animal.

74



Iterating over integers

Often we need to iterate over a sequence of integers:

for i in [0, 1, 2, 3, 4, 5]:
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

75



Iterating over integers with range

The range(n) object is used to iterate over a sequence of
increasing integer values up to (but not including) n:

for i in range(6):
print(f"the square of {i} is {i**2}")

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

76



The range object

• range is used to iterate over integer sequences
• We can use the range object in for loops:
>>> for i in range(3):
... print(f"i={i}")
i=0
i=1
i=2

• We can convert it to a list:
>>> list(range(6))
[0, 1, 2, 3, 4, 5]

77



• This conversion to list is useful to understand what
sequences the range object would provide if used in a for
loop:
>>> list(range(6))
[0, 1, 2, 3, 4, 5]
>>> list(range(0, 6))
[0, 1, 2, 3, 4, 5]
>>> list(range(3, 6))
[3, 4, 5]
>>> list(range(-3, 0))
[-3, -2, -1]

• ∗Advanced: range has its own type:
>>> type(range(6))
<class range>
range objects are lazy sequences (Python range is not an iterator)

78

https://treyhunner.com/2018/02/python-range-is-not-an-iterator/


Summary range

range
range([start,] stop [,step]) iterates over integers from
start up to to stop (but not including stop) in steps of step.

start defaults to 0 and step defaults to 1.

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 4))
[] # no iterations

79



Iterating over sequences with for-loop

• for loop iterates over iterables.
• Sequences are iterable.
• Examples

for i in [0, 3, 4, 19]: # list is a
print(i) # sequence

for animal in ['dog', 'cat', 'mouse']:
print(animal)

for letter in "Hello World": # strings are
print(letter) # sequences

for i in range(5): # range objects
print(i) # are iterable

80



Example: create list with for-loop

def create_list_of_increasing_halfs(n):
"""Given integer n >=0, return list of length
n starting with [0, 0.5, 1.0, 1.5, ...]."""
result = []
for i in range(n):

number = i * 1 / 2
result.append(number)

return result

# main program
print(create_list_of_increasing_halfs(5))

Output:

[0.0, 0.5, 1.0, 1.5, 2.0]
81



Example: modify list with for-loop

def modify_list_add_42(original_list):
"""Given a list, add 42 to every element
and return"""
modified_list = []
for element in original_list:

new_element = element + 42
modified_list.append(new_element)

return modified_list

# main program
print(modify_list_add_42([0, 10, 100, 1000]))

Output:

[42, 52, 142, 1042]
82



Reminder: If-then-else

• Example 1 (if-then-else)
a = 42
if a > 0:

print("a is positive")
else:

print("a is negative or zero")

83



Another iteration example

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
pass # do nothing

else:
result.append(k)

return result

84

https://en.wikipedia.org/wiki/Thirteenth_floor


Another iteration example (with continue)

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
"""Given ints a and b, return
list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
continue # jump to next iteration

result.append(k)
return result

85

https://en.wikipedia.org/wiki/Thirteenth_floor


Exercise range_double

Write a function range_double(n) that generates a list of
numbers similar to list(range(n)). In contrast to
list(range(n)), each value in the list should be multiplied by
2. For example:

>>> range_double(4)
[0, 2, 4, 6]
>>> range_double(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

For comparison the behaviour of range:

>>> list(range(4))
[0, 1, 2, 3]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] LAB3 86



For loop summary

• for-loop to iterate over sequences
• can use range to generate sequences of integers
• special keywords:

• continue - skip remainder of body of statements and
continue with next iteration

• break - leave for-loop immediately
• ∗Advanced:

• can iterate over any iterable
• we can create our own iterables
• See summary Socratica on Iterators, Iterables, and Itertools

87

https://youtu.be/WR7mO_jYN9g


Exercise: First In First Out (FIFO) queue

Write a First-In-First-Out queue implementation, with
functions:

• add(name) to add a customer with name name (call this
when a new customer arrives)

• next() to be called when the next customer will be
served. This function returns the name of the customer

• show() to print all names of customers that are currently
waiting

• length() to return the number of currently waiting
customers

Suggest to use a global variable q and define this in the first
line of the file by assigning an empty list: q = [].

88



While loops

• Reminder:
a for loop iterates over a given sequence or iterator

• A while loop iterates while a condition is fulfilled
• x = 64

while x > 10:
x = x // 2
print(x)

produces
32
16
8

89



∗While loop example 2

Determine ϵ:

eps = 1.0

while eps + 1 > 1:
eps = eps / 2.0

print(f"epsilon is {eps}")

Output:

epsilon is 1.11022302463e-16

90



∗Iterables and iterators

• an object is iterable if the for-loop can iterate over it
• an iterator has a __next()__ method, i.e. can be used
with next(). The iterator is iterable.

>>> i = iter(["dog", "cat"]) # create iterator
# from list

>>> next(i)
'dog'
>>> next(i)
'cat'
>>> next(i) # reached end
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

91



∗Generators

• Generators are functions defined using yield instead of
return

• When called, a generator returns an object that behaves
like an iterator: it has a next method.

>>> def squares(n):
... for i in range(n):
... yield i**2
...
>>> s = squares(3)
>>> next(s)
0

92



>>> next(s)
1
>>> next(s)
4
>>> next(s)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

The execution flow returns at the yield keyword (similar to
return), but the flow continues after the yield when the next
method is called the next time.

A more detailed example demonstrates this:

93



def squares(n):
print("begin squares()")
for i in range(n):

print(f" before yield i={i}")
yield i**2
print(f" after yield i={i}")

>>> g = squares(3)
>>> next(g)
begin squares()

before yield i= 0
0
>>> next(g)

after yield i= 0
before yield i= 1

94



1
>>> next(g)

after yield i= 1
before yield i= 2

4
>>> next(g)

after yield i= 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

See also Socratica on Iterators, Iterables, and Itertools

95

https://youtu.be/WR7mO_jYN9g


Reading and writing files



File input/output

It is a common task to

• read some input data file
• do some calculation/filtering/processing with the data
• write some output data file with results

Python distinguishes between

• text files ('t')
• binary files 'b')

If we don’t specify the file type, Python assumes we mean text
files.

96



Writing a text file

>>> with open('test.txt', 'tw') as f:
... f.write("first line\nsecond line")
...
22

creates a file test.txt that reads

first line
second line

97



• To write data, we need to open the file with 'w' mode:
with open('test.txt', 'w') as f:

By default, Python assumes we mean text files. However,
we can be explicit and say that we want to create a Text
file for Writing:

with open('test.txt', 'wt') as f:

• If the file exists, it will be overridden with an empty file
when the open command is executed.

• The file object f has a method f.write which takes a
string as an input argument.

98



Reading a text file

We create a file object f using

>>> with open('test.txt', 'rt') as f: # Read Text

and have different ways of reading the data:

1. f.read() returns one long string for the whole file
>>> with open('test.txt', 'rt') as f:
... data = f.read()
...
>>> data
'first line\nsecond line'

99



2. f.readlines() returns a list of strings (each being one
line)
>>> with open('test.txt', 'rt') as f:
... lines = f.readlines()
...
>>> lines
['first line\n', 'second line']

100



3. ∗Advanced: Use text file f as an iterable object: process
one line in each iteration
>>> with open('test.txt', 'rt') as f:
>>> for line in f:
... print(line, end='')
...
first line
second line
>>> f.close()
This is important for large files: the file can be larger than
the computer RAM as only one line at a time is read from
disk to memory.

101



∗File input and output without context manager

With file context manager (recommended):

>>> with open('test.txt', 'rt') as f: # This creates
... # the context.
... data = f.read() # We can use 'f'
... # in the context.
... # File 'f' is automatically closed
>>> data # when the context is left.
'first line\nsecond line'

Without file context manager (not recommended!):

>>> f = open('test.txt', 'rt')
>>> data = f.read()
>>> f.close() # must close file manually
>>> data
'first line\nsecond line'

102



Use case: Reading a file, iterating over lines

Often we want to process line by line. Typical code fragment:

with open('myfile.txt', 'rt') as f:
lines = f.readlines()

# some processing of the lines object
for line in lines:

print(line)

103



Splitting a string

• We often need to split a string into smaller parts: use
string method split():
(try help("".split) at the Python prompt for more info)

Example:

>>> c = 'This is my string'
>>> c.split()
['This', 'is', 'my', 'string']
>>> c.split('i')
['Th', 's ', 's my str', 'ng']

104



Useful functions processing text files:

• string.strip() method gets rid of leading and trailing
white space, i.e. spaces, newlines (\n) and tabs (\t):
>>> a = " hello\n "
>>> a.strip()
'hello'

• int() and float convert strings into numbers (if possible)
>>> int("42")
42
>>> float("3.14")
3.14
>>> int("0.5")
Traceback (most recent call last):

ValueError: invalid literal for int()
with base 10: '0.5'

105



Exercise: Shopping list

Given a list

bread 1 1.39
tomatoes 6 0.26
milk 3 1.45
coffee 3 2.99

Write program that computes total cost per item, and writes to
shopping_cost.txt:

bread 1.39
tomatoes 1.56
milk 4.35
coffee 8.97

106



One solution

One solution is shopping_cost.py

with open('shopping.txt', 'tr') as fin: # INput File
lines = fin.readlines()

with open('shopping_cost.txt', 'tw') as fout: # OUTput File
for line in lines:

words = line.split()
itemname = words[0]
number = int(words[1])
cost = float(words[2])
totalcost = number * cost
fout.write(f"{itemname:10} {totalcost}\n")

107



Exercise

Write function print_line_sum_of_file(filename) that
reads a file of name filename containing numbers separated
by spaces, and which computes and prints the sum for each
line. A data file might look like

2 3 5 -30 100
0 45 3 2
17

LAB4

108



∗Binary files 1

• Files that store binary data are opened using the 'b' flag
(instead of 't' for Text):

open('data.dat', 'br')

• For text files, we read and write str objects. For binary
files, use the bytes type instead.

• By default, store data in text files. Text files are human
readable (that’s good) but take more disk space than
binary files.

• Reading and writing binary data is outside the scope of
this introductory module. If you read arbitrary binary
data, you may need the struct module.

• For large/complex scientific data, consider HDF5.

109



∗HDF5 files

• If you need to store large and/or complex data, consider
the use of HDF5 files:
https://portal.hdfgroup.org/display/HDF5/HDF5

• Python interface: https://www.h5py.org (import h5py)
• hdf5 files

• provide a hierarchical structure (like subdirectories and
files)

• can compress data on the fly
• supported by many tools
• standard in some areas of science
• optimised for large volume of data and effective access

110

https://portal.hdfgroup.org/display/HDF5/HDF5
https://www.h5py.org


Outlook: first plot

import math
import matplotlib.pyplot as plt # convention

xs = [] # store x-values for plot in list
ys = [] # store y-values for plot in list
for i in range(100): # compute data

x = 0.1 * i
xs.append(x)
y = math.sin(x) # we plot sin(x)
ys.append(y)

# plot data
plt.plot(xs, ys, '-o')

plt.savefig("matplotlib-mini-example.pdf")

111



Outlook: first plot

0 2 4 6 8 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

112



str, repr and eval



The str function and __str__ method

All objects in Python should provide a method __str__ which
returns an informal string representation of the object.
This method a.__str__ is called when we apply the str
function to object a:

>>> a = 3.14
>>> a.__str__()
'3.14'
>>> str(a)
'3.14'

>>> import datetime
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2022, 1, 13, 13, 44, 56, 392268)
>>> str(now)
'2022-01-13 13:44:56.392268'

113



Implicit calling of str function

The string method x.__str__ of object x is called implicitly, when we

• pass the object x directly to the print command

• use the ”{x}” notation in f-strings

>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2022, 1, 13, 13, 44, 56, 392268)
>>> print(now)
2022-01-13 13:44:56.392268
>>> f"{now}"
'2022-01-13 13:44:56.392268'

114



∗The repr function and __repr__ method

• The repr function should convert a given object into an as
accurate as possible string representation

• The repr function will generally provide a more detailed
string than str.

• Applying repr to the object x will attempt to call
x.__repr__().

• The python (and IPython) prompt uses repr to ’display’
objects.

115



Example:

>>> import datetime
>>> t = datetime.datetime.now()
>>> str(t)
'2022-01-13 13:55:39.158456'
>>> repr(t)
'datetime.datetime(2022, 1, 13, 13, 55, 39, 158456)'
>>> t
datetime.datetime(2022, 1, 13, 13, 55, 39, 158456)

For many objects, str(x) and repr(x) return the same string.

116



∗The eval function

The eval function accepts a string, and evaluates the string (as
if it was entered at the Python prompt):

>>> x = 1
>>> eval('x + 1')
2
>>> s = "[10, 20, 30]"
>>> type(s)
<class str>
>>> eval(s)
[10, 20, 30]
>>> type(eval(s))
<class list>

117



∗The repr and eval function

Given an accurate representation of an object as a string, we
can convert that string into the object using the eval function.

>>> i = 42
>>> type(i)
<class int>
>>> repr(i)
'42'
>>> type(repr(i))
<class str>
>>> eval(repr(i))
42
>>> type(eval(repr(i)))
<class int>

118



The datetime example:

>>> import datetime
>>> t = datetime.datetime.now()
>>> t_as_string = repr(t)
>>> t_as_string
'datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)'
>>> t2 = eval(t_as_string)
>>> t2
datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)
>>> type(t2)
<class datetime.datetime>
>>> t == t2
True

119



Print



print function

• the print function sends content to the “standard
output” (usually the screen)

• print() prints an empty line:
>>> print()

• Given a single string argument, this is printed, followed by
a new line character:
>>> print("Hello")
Hello

120



• Given another object (not a string), the print function will
ask the object for its preferred way to be represented as a
string (via the __str__ method):
>>> print(42)
42

• Given multiple objects separated by commas, they will be
printed separated by a space character:
>>> print("dog", "cat", 42)
dog cat 42

• To supress printing of a new line, use the end option:
>>> print("Dog", end=""); print("Cat")
DogCat
>>>

121



Common strategy for the print command

• Construct some string s, then print this string using the
print function
>>> s = "I am the string to be printed"
>>> print(s)
I am the string to be printed

• The question is, how can we construct the string s? We
talk about string formatting.

122



String formatting



String formatting & Example 1

• Task: Given some objects, we would like to create a string
representation.

• Example 1: a variable t has the value 42.123 and we like to
print Duration is 42.123s to the screen.

• Solution: Create a formatted string “Duration is
42.123s” and pass this string to the print function:
>>> t = 42.123
>>> print(f"Duration = {t}s")
Duration = 42.123s

• With string formatting, we mean the creation of the string
“Duration is 42.123s”

123



String formatting & Example 2

• Example 2: a variable t has the value 42.123 and we like to
print Duration is 42.1s to the screen (i.e round to one
post-decimal digit.)

• Solution:
>>> t = 42.123
>>> print(f"Duration = {t:.1f}s")
Duration = 42.1s

124



String formatting: Example 2 explanation

Explanation of f"Duration = {t:.1f}s”

f" Beginning of a formatted string literal
Duration = string content

{…} content in curly braces is evaluated by Python
t take value from variable t
:f format t as a floating point number
.1 display one digit after the decimal point
s string content
" end of formatted string literal

125



String formatting examples with numbers

>>> import math
>>> p = math.pi
>>> f"{p}" # default representation (same as `str(p)`)
'3.141592653589793'
>>> str(p)
'3.141592653589793'
>>> f"{p:f}" # as floating point number (6 post-dec digits)
'3.141593'
>>> f"{p:10f}" # total number 10 characters wide
' 3.141593'
>>> f"{p:10.2f}" # 10 wide and 2 post-decimal digits
' 3.14'
>>> f"{p:.10f}" # 10 post-decimal digits
'3.1415926536'
>>> f"{p:e}" # in exponential notation
'3.141593e+00'
>>> f"{p:g}" # extra compact
'3.14159' 126



Expressions in f-strings are evaluated at run time

We can evaluate Python expressions in the f-strings:

>>> import math
>>> f"The diagonal has length {math.sqrt(2)}."
'The diagonal has length 1.4142135623730951.'

∗Advanced: Precision specifier can also be variables:

>>> width = 10
>>> precision = 4
>>> f"{math.pi:{width}.{precision}}"
' 3.142'

127



Show variable name and value with {name=}

Convenient short cut for debugging print statements:

>>> a = 10
>>> b = 20
>>> c = math.sqrt(a**2 + b**2)
>>> f"State: {a=} {b=} {c=}"
'State: a=10 b=20 c=22.360679774997898'

128



String formatting method overview

“f-strings”: most convenient and recommended method (2016):

>>> value = 42
>>> f"the value is {value}"
'the value is 42'

“new style” or “advanced” string formatting (Python 3, 2006):

>>> "the value is {}".format(value)
'the value is 42'

“% operator” (Python 1 and 2):

>>> "the value is %s" % value
'the value is 42'

129



Default function arguments



Default argument values for functions

• Motivation:
• suppose we need to compute the area of rectangles and
• we know the side lengths a and b.
• Most of the time, b=1 but sometimes b can take other
values.

• Solution 1:
def area(a, b):

return a * b

print(f"The area is {area(3, 1)}")
print(f"The area is {area(2.5, 1)}")
print(f"The area is {area(2.5, 2)}")

130



• We can make the function more user friendly by providing
a default value for b. We then only have to specify b if it is
different from this default value:

• Solution 2 (with default value for argument b):
def area(a, b=1):

return a * b

print(f"The area is {area(3)}")
print(f"The area is {area(2.5)}")
print(f"The area is {area(2.5, 2)}")

• Default parameters have to be at the end of the argument
list in the function definition.

131



Default argument values

You may have met default arguments in use before, for
example

• the print function uses end='\n' as a default value
• the open function uses mode='rt' as a default value
• the list.pop method uses index=-1 as a default

LAB6

132



Keyword function arguments



Keyword argument values

• We can call functions with a “keyword” and a value. (The
keyword is the name of the variable in the function
definition.)

• Here is an example
def f(a, b, c):

print(f"{a=} {b=} {c=}")

f(1, 2, 3)
f(c=3, a=1, b=2)
f(1, c=3, b=2)
which produces this output:

133



a=1 b=2 c=3
a=1 b=2 c=3
a=1 b=2 c=3

• If we use only keyword arguments in the function call,
then we do not need to know the order of the arguments.
(This is good.)

• Choosing meaningful variable names in the function
definition makes the function more user friendly.

134



∗Disallow or enforce keyword argument use

def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):
----------- ---------- ----------
| | |
| Positional or keyword |
| - Keyword only
-- Positional only

See https://www.python.org/dev/peps/pep-0570/#how-to-teach-this

def standard_arg(arg):
print(arg)

def pos_only_arg(arg, /):
print(arg)

135

https://www.python.org/dev/peps/pep-0570/#how-to-teach-this


def kwd_only_arg(*, arg):
print(arg)

def combined_example(pos_only, /, standard, *, kwd_only):
print(pos_only, standard, kwd_only)

136



List comprehension



List comprehension - one slide summary

>>> xs = [2*i for i in range(5)] # 'list comprehension'
>>> print(xs)
[0, 2, 4, 6, 8]

is equivalent to this for set of commands with a for loop:

>>> xs = []
>>> for i in range(5):
... xs.append(2*i)
...
>>> print(xs)
[0, 2, 4, 6, 8]

• useful when we need to process or create a list quickly
• no additional functionality over for-loop
• sometimes more elegant (≈ shorter) than for-loop

137



List comprehension

• List comprehension follows the mathematical “set builder
notation”

• Convenient way to process a list into another list (without
for-loop).

Examples

>>> [2*i for i in range(5)]
[0, 2, 4, 6, 8]

>>> [x**2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

138

http://en.wikipedia.org/wiki/List_comprehension
http://en.wikipedia.org/wiki/Set-builder_notation
http://en.wikipedia.org/wiki/Set-builder_notation


List comprehension structure

Structure of list comprehension:

[EXPRESSION(OBJECT) for OBJECT in SEQUENCE]

where EXPRESSION, OBJECT, and SEQUENCE can vary.
Examples:

>>> [2*i for i in range(5)]
[0, 2, 4, 6, 8]

>>> import math
>>> [math.sqrt(x) for x in [1, 4, 9, 16]]
[1.0, 2.0, 3.0, 4.0]

>>> [s.capitalize() for s in ["dog", "cat", "mouse"]]
['Dog', 'Cat', 'Mouse']

139



List comprehension example 1 and 2

Can be useful to populate lists with numbers quickly

• Example 1:

>>> ys = [x**2 for x in range(10)]
>>> ys
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

• Example 2:

>>> import math
>>> xs = [0.1 * i for i in range(5)]
>>> xs
[0.0, 0.1, 0.2, 0.3, 0.4]
>>> ys = [math.exp(x) for x in xs]
>>> ys
[1.0, 1.1051709180756477, 1.2214027581601699,
1.3498588075760032, 1.4918246976412703]

140



List comprehension with filter

[EXPRESSION(OBJECT) for OBJECT in SEQUENCE
if CONDITION(OBJECT)]

• include OBJECT only if CONDITION(OBJECT) is True.
• Example:
>>> [i for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> [i for i in range(10) if i > 5]
[6, 7, 8, 9]

>>> [i for i in range(10) if i**2 > 5]
[3, 4, 5, 6, 7, 8, 9]

141



∗Dictionary comprehension

In addition to list comprehension there is also dictionary
comprehension available:

>>> {x: x**2 for x in range(5)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

>>> {word: len(word) for word in ["dog", "bird", "mouse"]}
{'dog': 3, 'bird': 4, 'mouse': 5}

142



∗Generator comprehension (advanced)

Generators (see slide 92) can also be created using a
comprehension syntax:

>>> gen = (x**2 for x in range(5))
>>> type(gen)
<class 'generator'>
>>> for item in gen:
... print(item)
...
0
1
4
9
16
>>> list( (x**2 for x in range(5)) )
[0, 1, 4, 9, 16]
>>>

143



Optimisation



Optimisation example: garden fence

garden 
area A

a 

b

fence

Optimisation problem:

• The shape of the fenced area must be a rectangle (side
lengths a and b).

• We have L = 100m of fence available.
• We want to maximise the enclosed garden area A = ab.
• What are the optimal values for a and b?

144



Optimisation example: strategy

garden 
area A

a 

b

fence

How do we find a and b that optimise the area A(a,b)?

• We know L = 100m = 2a+ 2b
• So we have only one unknown: when a is fixed, then b is
given by b = (L− 2a)/2.

• Change a systematically to find best largest value of A.

145



Optimisation example: attempt 1 1/3

import matplotlib.pyplot as plt

def fenced_area(a):
"""Return area for garden with side length a.

Given the side length a of a rectangular garden fence
(with side lengths a and b), compute what side length
b can be used for a total fence length of 100m.
Return the associated area.
"""
L = 100 # total length of fence in metre
# for a given a, what is length b to use all 100m?
# L = 2*a + 2b => b = (L - 2a) / 2
b = (L - 2*a) / 2

146



Optimisation example: attempt 1 2/3

# main program
side_lengths = [] # collect the side length a
areas = [] # collect the associated areas

# vary side length of fence a [in metres]
for a in range(10, 40, 5):

side_lengths.append(a)
areas.append(fenced_area(a))

plt.plot(side_lengths, areas, '-o')
plt.xlabel('a [m]')
plt.ylabel('garden area [m^2]')
plt.grid(True)
plt.savefig('optimisation-fence.pdf')

147



Optimisation example: attempt 1 3/3

10 15 20 25 30 35
a [m]

400

450

500

550

600

ga
rd

en
 a

re
a 

[m
^2

]

148



Optimisation example: “educational example”

We show one strategy to solve an optimisation problem with a
simple example so we can focus on the strategy.

For the given fence problem:

• we can guess the correct answer
• there are better ways to find the result with the computer
• we can find the correct answer analytically

Analytical solution

• A(a) = ab = a (L−2a)
2 = aL

2 − a2

• Find maximum using dA
da

!
= 0 : dA

da = L
2 − 2a⇒ a = L

4

• b = L−2a
2 ⇒ b = L

4

• Check d2A
da2 = −2 < 0⇒ A

( L
4
)
is maximum. ✓

149



Higher Order Functions



Motivational exercise: function tables

• Write a function print_x2_table() that prints a table of
values of f(x) = x2 for x = 0, 0.5, 1.0, ..2.5, i.e.

0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

• Then do the same for f(x) = x3

• Then do the same for f(x) = sin(x)

150



Can we avoid code duplication?

Idea: Pass function f(x) to tabulate to tabulating function

Example: (print_f_table.py)

def print_f_table(f):
"""Given a function f, tabulate it."""
for i in range(6):

x = i * 0.5
print(f"{x} {f(x)}")

def square(x):
return x ** 2

print_f_table(square)

151



produces

0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

152



Can we avoid code duplication (2)?

def print_f_table(f):
for i in range(6):

x = i * 0.5
fx = f(x)
print(f"{x} {fx}")

def square(x):
return x ** 2

def cubic(x):
return x ** 3

153



print("Square"); print_f_table(square)
print("Cubic"); print_f_table(cubic)

produces:

Square
0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

Cubic
0.0 0.0
0.5 0.125
1.0 1.0
1.5 3.375
2.0 8.0
2.5 15.625

154



∗Example: iterating over functions

• Example (trigtable.py):
import math
funcs = [math.sin, math.cos]
for f in funcs:

fname = f.__name__
for x in [0, math.pi/2]:

fx = f(x)
print(f"{fname}({x:.3f}) = {fx:.3f}")

produces
sin(0.000) = 0.000
sin(1.571) = 1.000
cos(0.000) = 1.000
cos(1.571) = 0.000

155



Higher order functions / are first class objects

Functions are ’just’ objects in Python. Related terminology:

• Functions are first class objects↔ functions can be given
to other functions as arguments

• Higher order functions accept (or return) functions as
arguments.

156

http://en.wikipedia.org/wiki/First-class_object
https://en.wikipedia.org/wiki/Higher-order_function


Common Computational Tasks



Overview common computational tasks

• Data file processing, python, numpy & pandas

• Data cleaning, data engineering, tabular data (pandas)
• Linear algebra fast arrays (numpy)
• Random number generation and Fourier transforms
(numpy)

• Interpolation of data (scipy.interpolate.interp)
• Fitting a curve to data (scipy.optimize.curve_fit)
• Integrating a function numerically
(scipy.integrate.quad)

• Integrating a ordinary differential equation numerically
(scipy.integrate.solve_ivp)

157



• Finding the root of a function (scipy.optimize.fsolve,
scipy.optimize.brentq)

• Minimising or maximising a function
(scipy.optimize.fmin)

• Symbolic manipulation of terms, including integration,
differentiation and code generation (sympy)

All in the following (third party) python packages:

scipy, numpy, pandas, sympy

158



Scientific Python



SciPy (SCIentific PYthon)

(Partial) output of help(scipy):

constants --- Physical and math. constants and units
integrate --- Integration routines
interpolate --- Interpolation Tools
io --- Data input and output (also matlab)
linalg --- Linear algebra routines
ndimage --- N-D image package
optimize --- Optimization Tools
signal --- Signal Processing Tools
sparse --- Sparse Matrices
spatial --- Spatial data structures and algorithms
special --- Special functions
stats --- Statistical Functions

159



Optimisation



Optimisation (Minimisation)

• Optimisation typically described as: given a (“objective”)
function f(x), find xm so that f(xm) is the (local) minimum
of f.

• Optimisation algorithms need to be given a starting point
(initial guess x0 as close as possible to xm)

• Minimum position x obtained may be local (not global)
minimum

To maximise a function f(x), create a second function
g(x) = −f(x) and minimise g(x).

160



Optimisation example: parabola

from scipy import optimize

def f(x):
"""parabola - minimum at x=0"""
return x**2

minimum = optimize.fmin(f, 1)
print("======= Result: ==========")
print(minimum)

Code produces this output:

161



Optimization terminated successfully.
Current function value: 0.000000
Iterations: 17
Function evaluations: 34

======= Result: ==========
[-8.8817842e-16]

162



Optimisation example: garden fence

garden 
area A

a 

b

fence

10 15 20 25 30 35
a [m]

400

450

500

550

600

ga
rd

en
 a

re
a 

[m
^2

]

163



Optimisation example: garden fence

from scipy.optimize import fmin

def fenced_area(a):
"""Return area for garden with side length a.

Given the side length a of a rectangular garden fence
(with side lengths a and b), compute what side length
b can be used for a total fence length of 100m.
Return the associated area.
"""
L = 100 # total length of fence in metre
# for a given a, what is length b to use all 100m?
# L = 2*a + 2b => b = (L - 2a) / 2
b = (L - 2*a) / 2
return a*b # area that fence encloses

164



def objective_function(a):
return -1*fenced_area(a)

# main program
a0 = 10 # m, initial guess for fence length of a
a_opt = fmin(objective_function, a0)
print("======= Result: ==========")
print(a_opt)

Code produces this output:

165



Optimization terminated successfully.
Current function value: -625.000000
Iterations: 22
Function evaluations: 44

======= Result: ==========
[25.]

166



Optimisation example: multiple minima

import numpy as np
from scipy.optimize import fmin
import matplotlib.pyplot as plt

def f(x): # objective function
return np.cos(x) - 3 * np.exp(-((x - 0.2) ** 2))

# find minima of f(x),
# starting from 1.0 and 2.0 respectively
minimum1 = fmin(f, 1.0)
print("Start search at x=1., minimum is", minimum1)
minimum2 = fmin(f, 2.0)
print("Start search at x=2., minimum is", minimum2)

# plot function

167



x = np.arange(-10, 10, 0.1)
y = f(x)
fig, ax = plt.subplots()
ax.plot(x, y, label=r"$\cos(x)-3e^{-(x-0.2)^2}$")
ax.set_xlabel("$x$")
ax.set_xlabel("$f(x)$")
ax.grid()
ax.axis([-5, 5, -2.2, 0.5])

# add minimum1 to plot
ax.plot(minimum1, f(minimum1), "vr", label="minimum 1")
# add start1 to plot
ax.plot(1.0, f(1.0), "or", label="start 1")

# add minimum2 to plot
ax.plot(minimum2, f(minimum2), "vg", label="minimum 2")
# add start2 to plot
ax.plot(2.0, f(2.0), "og", label="start 2")

168



ax.legend(loc="lower left")
fig.savefig("fmin1.pdf")

Code produces this output:

Optimization terminated successfully.
Current function value: -2.023866
Iterations: 16
Function evaluations: 32

Start search at x=1., minimum is [0.23964844]
Optimization terminated successfully.

Current function value: -1.000529
Iterations: 16
Function evaluations: 32

Start search at x=2., minimum is [3.13847656]

169



4 2 0 2 4
f(x)

2.0

1.5

1.0

0.5

0.0

0.5

cos(x) 3e (x 0.2)2

minimum 1
start 1
minimum 2
start 2

170



Dictionary



Dictionaries

• Python provides another data type: the dictionary.
Dictionaries are also called “associative arrays” and “hash tables”.

• Dictionaries are unordered sets of key-value pairs.
Starting from Python 3.7, dictionaries preserve insertion order.

• An empty dictionary can be created using curly braces:
>>> d = {}

• Keyword-value pairs can be added like this:
>>> d['today'] = '22 deg C' # 'today' is key

# '22 deg C' is value
>>> d['yesterday'] = '19 deg C'

• We can retrieve values by using the keyword as the index:
>>> d['today']
'22 deg C'

171



• d.keys() returns all keys:
>>> d.keys()
dict_keys(['today', 'yesterday'])

• d.values() returns all values:
>>> d.values()
dict_values(['22 deg C', '19 deg C'])

• Check if key is in dictionary:
>>> 'today' in d.keys()
True
Equivalent to
>>> 'today' in d
True

172



Dictionary example 1: drinks order

order = {} # create empty dictionary

# add orders as they come in
order['Peter'] = 'Sparkling water'
order['Paul'] = 'Cup of tea'
order['Mary'] = 'Cappuccino'

# deliver order at bar
for person in order.keys():

print(f"{person} requests {order[person]}")

produces this output:

Peter requests Sparkling water
Paul requests Cup of tea
Mary requests Cappuccino

173



Iterating over dictionaries

Iterating over the dictionary itself is equivalent to iterating over the
keys. Example:

order = {} # create empty dictionary

# add orders as they come in
order['Peter'] = 'Sparkling water'
order['Paul'] = 'Cup of tea'
order['Mary'] = 'Cappuccino'

# iterating over keys:
for person in order.keys():

print(f"{person} requests {order[person]}")

# is equivalent to iterating over the dictionary:
for person in order:

print(f"{person} requests {order[person]}")
174



Dictionary example 2: counting objects

def count_fruit(fruits):
"""Given a list of fruits (each fruit one string), return a
dictionary: each fruit is a key, and the associated value
reports how often the fruit occurred in the list of fruits.
"""
d = {} # start with empty dictionary
for fruit in fruits: # process all elements in list fruits

if fruit not in d: # this is the first time we find
# the fruit in the list

d[fruit] = 1 # create an entry with key=fruit
else: # we have seen this fruit before

d[fruit] = d[fruit] + 1 # increase counter

return d

result = count_fruit(['banana', 'apple', 'banana', 'orange'])
print(result)

produces this output:

{'banana': 2, 'apple': 1, 'orange': 1} 175



Summary dictionaries

• similar to data base

• fast to retrieve value

• useful if you are dealing with two lists at the same time
(possibly one of them contains the keyword and the other the
value)

• useful if you have a data set that needs to be indexed by strings
or tuples (or other immutable objects)

• keys must be immutable (such as strings, numbers, tuples)

• values can be any Python object (including dictionaries)

176



Computing derivatives numerically



Overview

Motivation:

• We need derivatives of functions for some optimisation
and root finding algorithms

• Not always is the function analytically known (but we are
usually able to compute the function numerically)

• The material presented here forms the basis of the
finite-difference technique that is commonly used to
solve ordinary and partial differential equations.

177



From analytical maths to numerics: 1st derivative

• One definition of derivative (or “differential operator” d
dx ):

f ′(x) = df
dx(x) = lim

h→0

f(x+ h)− f(x− h)
2h

• Use difference operator to approximate differential
operator

f ′(x) = df
dx(x) = lim

h→0

f(x+ h)− f(x− h)
2h ≈ f(x+ h)− f(x− h)

2h

• ⇒ can now compute an approximation of f ′(x) simply by
evaluating f(x+ h) and f(x− h).

• We can choose h. Make it small (perhaps 10−6), but not
too small (10−15).

178



Geometric representations finite difference approximation

central difference approximation of derivative

f′(x) = f(x+ h)− f(x− h)
2h

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.5

0.0

0.5

1.0

1.5

central difference
(x=0, h=0.5)

f(x) = x2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.5

0.0

0.5

1.0

1.5

central difference      
(x=0.5, h=0.2)       

f(x) = x2

f′(0) with h = 0.5

f′(0.5) with
h = 0.2

179



Example f(x) = 1
3x
3

• Derivative of f(x) = x3/3:

f′(x) = d
dxf(x) =

d
dx
x3
3 = x2

• Central differences approximation at x = 2 with h = 0.1:

f′(x) ≈ f(x+ h)− f(x− h)
2h =

1
3(x+ h)3 − 1

3 f(x− h)3

2h

=
1
3
2.13 − 1.93

2h

=
1
3
2.13 − 1.93

0.2 = 4.0033333...

180



∗spacing h in central differences

Compute central difference approximation of
d
dx
x3
3 = x2

at x = 2. Correct result is x2 = 22 = 4.

Try different values of spacing h:

h centr. diff. appr abs. error
----------------------------------------

0.1 4.003333333333337 0.00333333
0.001 4.000000333332698 3.33333e-07
1e-06 4.000000000115023 1.15023e-10
1e-07 3.999999997894577 2.10542e-09
1e-09 4.000000330961484 3.30961e-07
1e-12 4.000355602329364 0.000355602
1e-15 3.996802888650563 0.00319711

→ too large h:
inaccurate
approximation
of derivative

→ too small h:
floating point
representation
errors 181



∗Example: spacing h in central differences

def f(x):
"""Return x^3/3. (Derivative is x^2)."""
return x**3 / 3

x = 2
exact = 2**2 # # correct derivative of x^3/3 at x=2 is 4
print(" h centr. diff. appr abs. error")
print(" ----------------------------------------")
for h in [1e-1, 1e-3, 1e-6, 1e-7, 1e-9, 1e-12, 1e-15]:

fprime = (f(x+h) - f(x-h)) / (2 * h)
print(f"{h:8g} {fprime:20.15f} {abs(fprime-exact):10.6g}")

182



Summary

• Can approximate derivatives of f(x) numerically
• need only function evaluations of f(x)

• f(x) could be measured or simulated data, for example.

183



Root finding



Rootfinding

Root finding
• Given a function f(x),
• we are searching an x0 so
f(x0) = 0.

• We call x0 a root of f(x). 2.0 1.5 1.0 0.5 0.0 0.5 1.0
x

10

5

0

5

x0 = 1

f(x) = (x 1)3 + 8

Why?

• Many science and engineering problems lead to equations
of the type f(x) = 0

184



Rootfinding: find crossing of two functions

• Often we have two functions f1(x) and f2(x), and we are looking for x0
so that f1(x0) = f2(x0) (red dot, left plot).

• in that case, we define g(x) = f2(x)− f1(x) and find a root for g(x) (red
dot, right plot)

4 2 0 2 4
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x0

f1(x)
f2(x)

4 2 0 2 4
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x0

g(x) = f2(x) f1(x)

Note that f2(x) could be a constant, such as f2(x) = 100 if we want to find the value x0 for which f1(x0) = 100. 185



Example

• Find root of function f(x) = x2(x− 2)
• f has a double root at x = 0, and a single root at x = 2.
• Ask algorithm to find single root at x = 2.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

3

2

1

0

1

2

3

f(x
)=

x3
2x

2
=

x2 (
x

2)

186



Using BrentQ algorithm from scipy

from scipy.optimize import brentq

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

# main program starts here
x = brentq(f, a=1.5, b=3, xtol=1e-6)

print(f"Root is approx {x}.")
print(f"The exact error is {2-x}.")

produces:

Root is approx 2.0000000189582865.
The exact error is -1.8958286496228993e-08.

187



Rootfinding for f(x) = 0 (scalar x): BrentQ

• To solve f(x) = 0 with o scalar x, we recommend the
BrentQ method

• Assumptions:
• We have the function f available as a Python function
• The function f has a single root between a and b
• The function is continuous

• The BrentQ method
• will find and return the root x ∈ [a,b]
• will use a fast (Newton) method if possible.

188



Root finding summary

• Given the function f(x), applications for root finding
include:

• to find x1 so that f(x1) = y for a given y (this is equivalent to
computing the inverse of the function f).

• to find crossing point xc of two functions f1(x) and f2(x) (by
finding root of difference function g(x) = f1(x)− f2(x))

• Recommended method: scipy.optimize.brentq which
combines the safe feature of the bisect method with the
speed of the Newton method.

• ∗For multi-dimensional functions f(x), use
scipy.optimize.fsolve.

189



∗Using fsolve for multi-dimensional root-finding problem

from scipy.optimize import fsolve # multidimensional solver

def f(v):
"""Return f(x, y) = (x^3, y). Trivial example with
root at x=0 and y=-1"""
x, y = v
return x**3, y+1

x, y = fsolve(f, x0=[2, 2]) # start search from x=2, y=2
print(f"Root is approximately at\nx={float(x)} "

f"and y={float(y)}")

produces:

Root is approximately at
x=1.0586069199901217e-16 and y=-1.0

190



Rootfinding: the Newton method

• Aim: find xroot so that f(xroot) = 0.
• Idea: close to the root xroot, the tangent of f(x) is likely to
point to the root. Make use of this information.

• Algorithm:
while |f(x)| >ftol, do

xn+1 = xn −
f(xn)
f′(xn)

where f′(x) = df
dx(x).

• fast convergence (much better than bisection method)
• but not guaranteed to converge.
• Need a good initial guess x0 for the root.
• Need a way to compute (or approximate) f′(x) ≡ df

dx(x).

191



The Newton method (tol=1e-15)

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

f(x
)=

x2 (
x

2)
=

x3
2x

2

f(x0)

f(x1)

f(x2)

f(x3)

x0 = 1.600000000000000; f(x0) = -1.024000000000000
x1 = 2.399999999999999; f(x1) =  2.303999999999997
x2 = 2.100000000000000; f(x2) =  0.440999999999999
x3 = 2.008695652173913; f(x3) =  0.035085723678803
x4 = 2.000074640791193; f(x4) =  0.000298585450178
x5 = 2.000000005570624; f(x5) =  0.000000022282496
x6 = 2.000000000000000; f(x6) =  0.000000000000000

192



193



Plotting data from csv file



Data analysis example: temperature anomaly

• National Oceanic and Atmospheric Administration (NOAA)
hosts climate data at https://www.ncei.noaa.gov/access/monitoring/

climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024

• provides average global temperature data since 1850
• we choose 12-month average from September to August
from 1850 to 2024 -> Download CSV

• anomaly data shows the temperature deviation from the
average 1910 to 2000.

194

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/globe/tavg/land_ocean/12/9/1850-2024


Beginning of data file

# Title: Land and Ocean Oct - Sept Average Temp Anomalies
# Units: Degrees Celsius
# Base Period: 1901-2000
# Missing: -999
Year,Anomaly
1851,-0.14
1852,-0.07
1853,-0.07
1854,-0.11
1855,-0.06
1856,-0.11
1857,-0.23
1858,-0.17
1859,-0.09
1860,-0.15
1861,-0.32

195



Data analysis example: attempt 1 1/3

import matplotlib.pyplot as plt

# read data
with open("data.csv", "tr") as f:

lines = f.readlines()

year = []
dT = []

for line in lines[6:]: # skip first 6 lines
a, b = line.split(",")
year.append(int(a)) # convert string of year to int
dT.append(float(b)) # convert string of temp to float

196



Data analysis example: attempt 1 2/3

# plot data
plt.bar(year, dT, color=[0.8, 0, 0])
plt.ylabel("temperature anomaly [deg C]")
plt.xlabel("years")
plt.grid(True)
plt.savefig("anomaly1.pdf")

197



Data analysis example: attempt 1 3/3

1850 1875 1900 1925 1950 1975 2000 2025
years

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

te
m

pe
ra

tu
re

 a
no

m
al

y 
[d

eg
 C

]

198



∗Data analysis example: outlook

• Here we read the CSV file manually
• There are dedicated libraries to read CSV files.
• Good starting point is read_csv() from pandas.

For this example, d = pandas.read_csv('data.txt', skiprows=4, index_col=0) works nicely.

Use d.plot.bar() to plot.

• We store the data in lists. Better options are
• numpy.array or
• pandas.Series.

199



Raising exceptions



Exceptions

• Errors arising during the execution of a program result in
“exceptions” being ’raised’ (or ’thrown’).

• We have seen exceptions before, for example when
dividing by zero:
>>> 4.5 / 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: float division by zero
or when we try to access an undefined variable:

200



>>> print(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

• Exceptions are a modern way of dealing with error
situations

• We will now see
• what exceptions are coming with Python
• how we can raise (“throw”) exceptions in our code

201



In-built Python exceptions

Python’s in-built exceptions (from
https://docs.python.org/3/library/exceptions.html)

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError

202

https://docs.python.org/3/library/exceptions.html


+-- ImportError
| +-- ModuleNotFoundError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError

203



| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning

204



+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

∗Advanced topic: We can catch exceptions.
∗Advanced topic: We can provide our own exception classes
(by inheriting from Exception).

205



Raising exceptions

• Because exceptions are Python’s way of dealing with
runtime errors, we should use exceptions to report errors
that occur in our own code.

• To raise a ValueError exception, we use
raise ValueError("Message")
and can attach a message "Message" (of type string) to
that exception which can be seen when the exception is
reported or caught:
>>> raise ValueError("Some problem occurred")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Some problem occurred

206



Raising NotImplementedError Example

Often used is the NotImplementedError in incremental
software development:

def my_complicated_function(x):
message = f"Called with x={x}"
raise NotImplementedError(message)

If we call the function:

>>> my_complicated_function(42)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in my_complicated_function

NotImplementedError: Called with x=42

207



Writing modules



Writing module files

• Motivation: it is useful to bundle functions that are used
repeatedly and belong to the same subject area into one
module file (also called “library”)

• This allows to re-use the functions in multiple Python
applications.

• Every Python file can be imported as a module.
• If the module file contains commands (other than class
and function definitions) then these are executed when
the file is imported. This can be desired but sometimes it
is not.

208



The internal __name__ variable (1)

• Here is an example of a module file saved as module1.py:

def someusefulfunction():
pass

print(f"My name is {__name__}")

We can execute this module file, and the output is

My name is __main__

• The internal variable __name__ takes the (string) value
"__main__" if the program file module1.py is executed.

209



• On the other hand, we can import module1.py in another file,
for example like this:

import module1

The output is now:

My name is module1

• We see that __name__ inside a module takes the value of the
module name if the file is imported.

210



if __name__ == __main__ …

module2.py:
1 def someusefulfunction():
2 pass
3

4 if __name__ == "__main__":
5 print("I am the top level")
6 else:
7 print(f"I am imported as a library '{__name__}'")

• Line 5 is only executed when the module is executed as the top
level (for example as python module2.py, or pressing F5 in
Spyder when editing the dile module2.py).

• __name__ allows conditional execution of code when top-level
or imported.

211



Application file example

def useful_function():
# Core function in this app.
# Could be useful in other apps.
pass

def main():
# Main functionality of this app in here.
useful_function()
# ...

if __name__ == "__main__":
main() # start main application

else:
# get here if the file is imported
pass

212



Library file example

def useful_function():
# core functionality of library here
pass

def test_for_useful_function():
print("Running self test ...")

if __name__ == "__main__":
test_for_useful_function()

else:
print("Setting up library")
# initialisation code that might be needed
# if imported as a library

213



Jupyter notebook



IPython (interactive python)

• Interactive Python (ipython) prompt
• command history (across sessions), auto completion
• special commands:

• %run myfile will execute file myfile.py in current name
space

• %reset can delete all objects if required
• use range? instead of help(range)
• %logstart will log your session
• %prun will profile code
• %timeit can measure execution time
• %load loads file for editing (also from URL)
• %debug start debugger after error

• Much more (read at http://ipython.org)

214

http://ipython.org


Jupyter Notebook useful for research and data science

• Used to be the IPython Notebook, but now supports many
more languages (JUlia, PYThon, ER→ JUPYTER)

• Notebook is executable document hosted in web browser.
• Home page http://jupyter.org

Great value for computational engineering and science
• Fangohr etal: Data Exploration and Analysis with Jupyter Notebooks
10.18429/JACoW-ICALEPCS2019-TUCPR02 (2020)

• Granger and Perez: Thinking and Storytelling with Jupyter,
10.1109/MCSE.2021.3059263 (2021)

• Fangohr, Di Pierro and Kluyver: Jupyter in Computational Science,
10.1109/MCSE.2021.3059494 (2021)

• Beg, Fangohr, etal: Using Jupyter for reproducible scientific workflows,
Computing in Science and Engineering 23, 36-46
10.1109/MCSE.2021.3052101 (2021)

• Blog entry: Jupyter for Computational Science and Data Science (2022) 215

http://jupyter.org
https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPR02
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1109/MCSE.2021.3059494
https://doi.org/10.1109/MCSE.2021.3052101
https://fangohr.github.io/blog/jupyter-for-computational-science-and-data-science.html


Numpy



numpy

numpy

• is an interface to high performance linear algebra libraries
(such as BLAS, LAPACK, ATLAS, MKL, BLIS)

• provides
• the array object (strictly ndarray type)
• fast mathematical operations over arrays
• linear algebra, Fourier transforms, random number
generation

• Numpy is not part of the Python standard library.

216



numpy 1d-arrays (vectors)

• An (1d) array is a sequence of objects
• all objects in one array are of the same type

>>> import numpy as np # widely used convention
>>> a = np.array([1, 4, 10]) # convert any sequence to array
>>> a
array([ 1, 4, 10])
>>> type(a)
<class numpy.ndarray>
>>> a + 100 # arithmetic operations apply to all elements
array([101, 104, 110])
>>> a**2
array([ 1, 16, 100])
>>> np.sqrt(a)
array([ 1. , 2. , 3.16227766])
>>> a > 3 # apply >3 comparison to all elements
array([False, True, True], dtype=bool)

217



Array creation 1: from iterable

• 1d-array (vector) from iterable

>>> import numpy as np
>>> a = np.array([1, 4, 10]) # from list
>>> a
array([ 1, 4, 10])
>>> print(a)
[ 1 4 10]

• 2d-array (matrix) from nested sequences

>>> B = np.array([[0, 1.5], [10, 12]]) # from nested list
>>> B
array([[ 0. , 1.5],

[ 10. , 12. ]])
>>> print(B)
[[ 0. 1.5]
[ 10. 12. ]] 218



Array type

• All elements in an array must be of the same type
• For existing array, the type is the dtype attribute

>>> a.dtype
dtype('int64')
>>> B.dtype
dtype('float64')

• We can fix the type of the array when we create the array, for
example:

>>> a2 = array([1, 4, 10], float)
>>> a2
array([ 1., 4., 10.])
>>> a2.dtype
dtype('float64')

219



Important array types

• For numerical calculations, we normally use double floats
which are known as float64 or short float:

>>> a2 = array([1, 4, 10], float)
>>> a2.dtype
dtype('float64')

• This is also the default type for zeros and ones.
• A full list is available at
http://docs.scipy.org/doc/numpy/user/basics.types.html

220

http://docs.scipy.org/doc/numpy/user/basics.types.html


Array size

The size of an array is the number of items:

>>> a.size
3
>>> B.size
4

The number of bytes per item is the itemsize:

>>> a.itemsize # dtype is int64 = 64 bit = 8 byte
8
>>> B.itemsize # dtype is float64 = 64 bit = 8 byte
8

221



The total number of bytes of an array is given through the nbytes
attribute:

>>> a.nbytes
24
>>> B.nbytes
32

222



∗Diving in with numpy.info

>>> z = np.arange(0, 12, 1).reshape(3, 4)
>>> z
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> z.dtype
dtype('int64')
>>> np.info(z)
class: ndarray
shape: (3, 4)
strides: (32, 8) # 32 bytes from row to row
itemsize: 8
aligned: True
contiguous: True
fortran: False
data pointer: 0x6000012dc060
byteorder: little
byteswap: False
type: int64
>>> z.nbytes
96 223



Array creation 2: arange

• arange([start,] stop[, step,]) is inspired by range:
create array from start up to but not including stop

>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(10, dtype=float)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])

• arange provides non-integer increments:

>>> np.arange(0, 0.5, 0.1)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5])

224



Array creation 3: linspace

• linspace(start, stop, num=50) provides num points
linearly spaced between start and stop (including stop):
>>> np.linspace(0, 10, 11)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
>>> np.linspace(0, 1, 11)
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])

225



Array shape

The shape is a tuple that describes

• (i) the dimensionality of the array (that is the length of the
shape tuple) and

• (ii) the number of elements for each dimension (“axis”)

Example:

>>> a.shape
(3,) # 1d array with 3 elements
>>> B.shape
(2, 2) # 2d array with 2 x 2 elements

226



Can use shape attribute to change shape:

>>> B
array([[ 0. , 1.5],

[ 10. , 12. ]])
>>> B.shape
(2, 2)
>>> B.shape = (4,)
>>> B
array([ 0. , 1.5, 10. , 12. ])

Number of dimension also available in attribute ndim:

>>> B.ndim
2
>>> len(B.shape) # same as B.ndim
2

227



Array indexing (1d arrays)

Regarding indexing, (1d)-Arrays behave like sequences:

>>> x = np.arange(0, 10, 2)
>>> x
array([0, 2, 4, 6, 8])
>>> x[3]
6
>>> x[4]
8
>>> x[-1] # last element
8

228



Array indexing (2d arrays)

>>> C = np.arange(12)
>>> C
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> C.shape = (3, 4)
>>> C
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> C[0, 0] # first index for rows, second for columns
0
>>> C[2, 0]
8
>>> C[2, -1] # row 3, last column
11
>>> C[-1, -1] # last row, last column
11 229



Array slicing (1d arrays)

Double colon operator ::
Read as START:END:INDEXSTEP

If either START or END are omitted, the respective ends of the
array are used. INDEXSTEP defaults to 1.

Examples:

230



>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> y[0:5] # slicing (default step is 1)
array([0, 1, 2, 3, 4])
>>> y[0:5:1] # equivalent (step 1)
array([0, 1, 2, 3, 4])
>>> y[0:5:2] # slicing with index step 2
array([0, 2, 4])
>>> y[:5:2] # from the beginning
array([0, 2, 4])
>>> y[0:5:-1] # negative index step size
array([], dtype=int64)
>>> y[5:0:-1] # from end to beginning
array([5, 4, 3, 2, 1])
>>> y[5:0:-2] # in steps of two
array([5, 3, 1])
>>> y[::-1] # reverses array elements
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

[Double colon operator works for all sequences.]

231



Array slicing (2d)

Slicing for 2d (or higher dimensional arrays) is analog to 1-d
slicing, but applied to each component. Common operations
include extraction of a particular row or column from a matrix:

>>> C
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> C[0, :] # row with index 0
array([0, 1, 2, 3])
>>> C[:, 1] # column with index 1

# (i.e. 2nd col)
array([1, 5, 9])

232



Array creation 4: zeros and ones

Other useful methods are zeros and ones which accept a
desired matrix shape as the input:

>>> np.zeros((2, 4)) # two rows, 4 cols
array([[0., 0., 0., 0.],

[0., 0., 0., 0.]])
>>> np.zeros((4,)) # (4,) is tuple
array([ 0., 0., 0., 0.])
>>> np.zeros(4) # 4 works as well
array([ 0., 0., 0., 0.])

>>> np.ones((2, 7))
array([[ 1., 1., 1., 1., 1., 1., 1.],

[ 1., 1., 1., 1., 1., 1., 1.]])

233



Array creation 5: eye and diag

Create Identity matrix eye (name from capital I used in
equations):

>>> np.eye(2)
array([[1., 0.],

[0., 1.]])

Create diagonal matrix diag:

>>> np.diag([10, 20, 30])
array([[10, 0, 0],

[ 0, 20, 0],
[ 0, 0, 30]])

234



∗Views of numpy arrays

Slicing a numpy array results in a view of the data (not a copy).

>>> C = np.arange(12).reshape(3, 4)
>>> C
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> view_C = C[0, :]
>>> view_C
array([0, 1, 2, 3])
>>> C[0, 0] = 42
>>> view_C
array([42, 1, 2, 3])

Often, this is desired — in particular when the arrays are large.

235



∗array.base points to the view’s data

• x.base == None means x is not a view.
• x.base is y means x is a view of y.

Example:

>>> x = np.arange(10)
>>> x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print(x.base)
None
>>> y = x[::2] # create a view with every 2nd element
>>> print(y.base)
[0 1 2 3 4 5 6 7 8 9]
>>> y.base is x
True
>>> np.shares_memory(x, y) # do x and y share memory?
True 236



Creating copies of numpy arrays

Create copy of 1d array:

>>> y = np.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> copy_y = y.copy()
>>> y[0] = 42
>>> copy_y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> print(copy_y.base)
None
>>> np.shares_memory(y, copy_y)
False

237



Solving linear systems of equations

np.linealg.solve(A, b) solves Ax = b for a square matrix A and
given vector b, and returns the solution vector x. Example:

Ax =

(
1 0
0 2

)(
x0
x1

)
=

(
1
4

)
= b

is equivalent to the system of linear equations:

1x0 + 0x1 = 1
0x0 + 2x1 = 4

>>> A = np.array([[1, 0], [0, 2]])
>>> b = np.array([1, 4])
>>> x = np.linalg.solve(A, b)
>>> x
array([ 1., 2.])
>>> np.dot(A, x) # Computing A*x
array([ 1., 4.]) # this should be b

238



Other linear algebra tools

help(np.linalg) provides an overview, including

• det to compute the determinant
• eig to compute eigenvalues and eigenvectors
• pinv to compute the (pseudo) inverse of a matrix
• svd to compute a singular value decomposition

239



Can I always use numpy instead of math?

By using numpy instead of math, we can write functions that accept normal scalars (int,
float, complex) and numpy arrays.

import numpy as np

def f(x):
"""Accepts scalar x or numpy array x and returns exp(-x) * x^2"""
return np.exp(-x) * x**2

x = 0.5
print(f"Calling with {x=} and {type(x)=}")
print(f" -> {f(x)=:f} and {type(f(x))=}.")
x = np.array([0.5, 1.0])
print(f"Calling with {x=} and {type(x)=}")
print(f" -> {f(x)=} and {type(f(x))=}.")

Ouput:

Calling with x=0.5 and type(x)=<class 'float'>
-> f(x)=0.151633 and type(f(x))=<class 'numpy.float64'>.

Calling with x=array([0.5, 1. ]) and type(x)=<class 'numpy.ndarray'>
-> f(x)=array([0.15163266, 0.36787944]) and type(f(x))=<class 'numpy.ndarray'>.

Note that for numpy.exp(x) for a scalar x is slower than math.exp(x).

240



numpy performance optimisation

• numpy is fast if number of elements is large: for an array
with one element, np.sqrt will be slower than math.sqrt

• avoid loops (formulate instead as matrix operation)
• numpy can be up to ∼100 times faster than naive Python
• ∗avoid copies of data (i.e. use views)

241



arrays are often faster than loops

Without arrays (need to use loop):

In [1]: %%timeit
...: N = 5000
...: mysum1 = 0
...: for i in range(N):
...: x = 0.1*i
...: mysum1 += math.sqrt(x)*math.sin(x)
...:

657 mu s +- 17.8 mu s per loop (7 runs, 1,000 loops each)

Optimised with numpy array:

In [2]: %%timeit
...: N = 5000
...: x = np.arange(0, N)*0.1
...: mysum2 = np.sum(np.sqrt(x)*np.sin(x))
...:

46.9 mu s +- 19.8 mu s per loop (7 runs, 10,000 loops each)

657µ seconds version 46.9µ seconds: factor ∼ 14 242



Reading data from text files with numpy

import numpy as np

def write_data_file(filename):
"""create test data file with this content:
0 0
1 1
2 4
3 9
"""
with open(filename, 'wt') as f:

for i in range(0, 4):
f.write(f"{i} {i**2}\n")

write_data_file('test-data.txt')
# read white-space separated data file with numpy.loadtxt:
data = np.loadtxt('test-data.txt')
print(data)

243



Ouput:

[[0. 0.]
[1. 1.]
[2. 4.]
[3. 9.]]

244



Summary

• numpy provides fast array operations
• elements in the array have the same type (typically a
numerical type)

• conversion options include:
• can create array from sequence s with a = np.array(s).
• can create list from array with a.tolist()

• ∗data is stored contiguously in memory (if possible)

245



Further reading for numpy

• Consult Numpy documentation if used outside this course.
Start here:

• Basics: https://numpy.org/doc/stable/user/absolute_
beginners.html

• Quickstart:
https://numpy.org/doc/stable/user/quickstart.html

• Matlab users may want to read Numpy for Matlab Users

246

http://www.numpy.org
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/quickstart.html
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html


Matplotlib



Matplotlib

• Matplotlib tries to make easy things easy and hard things
possible

• Matplotlib is a 2D plotting library which produces
publication quality figures (increasingly also 3d)

• Matplotlib can be fully scripted but interactive interface
available

247



Figure and axes windows

• We can have multiple subplots in one figure (fig)

• each has one axes object (with x-axis and y-axis)

• use plt.subplots to create figure and list of axes objects (example
next slide)

0 1 2 3
x-label for ax1

0.0

0.2

0.4

0.6

0.8

1.0

ax1

0 1 2 3
x-label for ax2

0.4

0.2

0.0

0.2

0.4

0.6

0.8

ax2

Figure with two sublots (called ax1 and ax2)

248



∗Figure and axes windows - source

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 3.14, 100)
y1 = np.sin(x)
y2 = np.sin(x * 5) * np.exp(-x)

fig, axes = plt.subplots(1, 2, figsize=(8, 4)) # 1 row, 2 cols
ax1, ax2 = axes # extract the two axes objects
ax1.plot(x, y1) # plot curve in left subplot
ax1.set_xlabel("x-label for ax1")
ax2.plot(x, y2) # plot curve in right subplot
ax2.set_xlabel("x-label for ax2")
ax1.text(1.5, 0.5, "ax1", weight="bold", fontfamily="monospace")
ax2.text(1.5, 0.3, "ax2", weight="bold", fontfamily="monospace")
fig.suptitle("Figure with two sublots (called ax1 and ax2)")
fig.savefig("matplotlib-subplot-example.pdf")

249



matplotlib.pyplot - example 1

import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(0, 10, 100) # create some data
ys = np.sin(xs)

fig, ax = plt.subplots() # one figure, one subplot
ax.plot(xs, ys)
fig.savefig("pyplot-demo1.pdf")

0 2 4 6 8 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

250



matplotlib.pyplot - example 2: labels and grid

fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(xs, ys, 'o-', linewidth=2, color='orange')

ax.grid(True)
ax.set_xlabel('x')
ax.set_ylabel('y=f(x)')
fig.savefig("pyplot-demo2.pdf")

0 2 4 6 8 10
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y=
f(x

)

251



matplotlib.pyplot - example 3: two curves

xs = np.linspace(0, 10, 100) # create some data
ys1 = np.sin(xs)
ys2 = np.sin(xs)**2
fig, ax = plt.subplots(figsize=(6, 4)) # plot data
ax.plot(xs, ys1, '--', color='orange', label='sin(x)')
ax.plot(xs, ys2, '-', color='darkgreen', label='sin(x)^2')
ax.set_xlabel('x')
ax.legend()
fig.savefig("pyplot-demo3.pdf")

0 2 4 6 8 10
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sin(x)
sin(x)^2

252



Matplotlib.pyplot interface

• Matplotlib.pyplot is an object oriented plotting interface
• Very fine grained control over plots
• recommended to use

253



matplotlib.pyplot - references

Matplotlib.pyplot
Matplotlib.pyplot is an object oriented plotting interface.

• prefer this over pylab
• Matplotlib tutorials at
https://matplotlib.org/stable/tutorials/index

• Check gallery at
https://matplotlib.org/stable/gallery/index.html

• Nicolas Rougier. Scientific Visualization: Python +
Matplotlib. Nicolas P. Rougier. 2021, 978-2- 9579901-0-8.
hal-03427242, online at https://github.com/rougier/
scientific-visualization-book

254

https://matplotlib.org/stable/tutorials/index
https://matplotlib.org/stable/gallery/index.html
https://github.com/rougier/scientific-visualization-book
https://github.com/rougier/scientific-visualization-book


Matplotlib in IPython QTConsole and Notebook

Within the IPython console (for example in Spyder) and the
Jupyter Notebook, use

• %matplotlib inline to see plots inside the console
window, and

• %matplotlib qt to create pop-up windows with the plot.
(May need to call matplotlib.show().) We can
manipulate the view interactively in that window.

• In Spyder, the plots appear by default in the “plots” pane.
• Within the Jupyter notebook, you can use %matplotlib
notebook which embeds an interactive window in the note
book.

255



Curve fitting



Curve fitting

Given n data points (xi, yi), i = 1, . . . ,n, and a model y = f(x, p⃗),
with model parameters p⃗ = (p1,p2, ...), find coefficients p⃗ so
that yi = f(xi, p⃗) describes the data “best”.

0 1 2 3 4 5
x

2

3

4

5

6

7

y

Linear regression
data xi, yi

fit f(x) = ax + b with parameters a=1.0 b=2.06

Wikipedia: Curve fitting 256

https://en.wikipedia.org/wiki/Curve_fitting


Curve fitting example: parabola

0 1 2 3 4 5
x

15

10

5

0

5

10

data points
fit f(x) = ax2 + bx + c with a=-0.969 b=0.00839 c=9.56

257



import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize

def create_data(n):
"""Given an integer n, returns n data points
x and values y as a numpy.array."""
xmax = 5.0
x = np.linspace(0, xmax, n)
y = -x**2 + 10 # i.e. a=-1 b=0 c=10
# make y-data somewhat irregular
y += 1.5 * np.random.normal(size=len(x))
return x, y

def model(x, a, b, c): # Equation for fit
"""Return ax^2 + bx + c."""
return a * x ** 2 + b * x + c

# main program
n = 100
x, y = create_data(n)

258



# do curve fit
p, pcov = scipy.optimize.curve_fit(model, x, y)
a, b, c = p
# plot fit and data
xfine = np.linspace(0.1, 4.9, n * 5)
fig, ax = plt.subplots()
ax.plot(x, y, "o", label="data points")
label = fr"fit $f(x) = ax^2 + bx + c$ with {a=:.3} {b=:.3} {c=:.3}"
ax.plot(xfine, model(xfine, a, b, c), label=label)
ax.legend()
ax.set_xlabel("x")
fig.savefig("curvefit2.pdf")

259



Curve fitting example: exponential function

4 2 0 2 4
x

0.0

0.5

1.0

1.5

2.0

2.5 data points
fit f(x) = aexp(x/b) with a=0.209 b=-2.03

260



import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize

def create_data(n):
"""Given an integer n, returns n data points
x and values y as a numpy.array."""
xmax = 5.0
x = np.linspace(-xmax, xmax, n)
y = 0.2*np.exp(x/-2) # i.e. a=0.2 b=-1
# make y-data somewhat irregular
y += 0.1 * np.random.normal(size=len(x))
return x, y

def model(x, a, b): # Equation for fit
"""Return a*exp(-x/b)."""
return a * np.exp(x/b)

# main program
n = 100
x, y = create_data(n)

261



# do curve fit, and provide initial guess p0 = (a, b)
p, pcov = scipy.optimize.curve_fit(model, x, y, p0=(1, -1))
a, b = p # extract result of curve_fit

# plot fit and data
xfine = np.linspace(-4.9, 4.9, n * 5)
fig, ax = plt.subplots()
ax.plot(x, y, "o", label="data points")
label = fr"fit $f(x) = a\exp(x/b)$ with {a=:.3} {b=:.3}"
ax.plot(xfine, model(xfine, a, b), label=label)
ax.legend()
ax.set_xlabel("x")
fig.savefig("curvefit3.pdf")

262



Curve fitting: related libraries

Which model describes my data best? See also

• statsmodels at
https://www.statsmodels.org/stable/index.html

• scikit-learn at https://scikit-learn.org/

263



Virtual Environments venv



Virtual environment

Given an installed Python interpreter, we can create virtual
environments:

python -m venv myvirtualenv

and activate that environment (see also next slide):

• linux/MacOS: source myvirtualenv/bin/activate

• cmd.exe: myvirtualenv\Scripts\activate.bat

Why virtual environments?

• good practice: one environment per project

• better reproducibility

• can install two versions of the same library in different
environments

264



Activating virtual environments in different shells

From https://docs.python.org/3/library/venv.html:

265

https://docs.python.org/3/library/venv.html


Installing python packages with pip



PyPI

• The Python Package Index (PyPI) provides many python
packages (https://pypi.org)

• Can search the website for packages, and available
versions

• Install locally (in virtual environment) using pip

Example: install the python cowsay package:

pip install cowsay

Uninstall:

pip uninstall cowsay

266

https://pypi.org


pip commands

• pip install cowsay
• pip install cowsay==3.0
– install version 3.0

• pip uninstall cowsay
• pip install -U cowsay
– upgrade cowsay

• pip show cowsay
- show information about installed package

• pip list
- list installed packages

• pip freeze
- list installed packages in machine readable format

267



Summary virtual environments and pip commands

Summary
• create virtual environment before installing packages
• Common names for virtual environments: env, venv, .env,
.venv

• use (at least) one virtual environment per project
• use
pip freeze
and
pip install -r requirements.txt
to maintain reproducible environments

See more detailed discussion at: https://fangohr.github.io/
introduction-to-python-for-computational-science-and-engineering/
18-environments.html 268

https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/18-environments.html


∗pixi- package management

Pixi is a package and tasks management tool that can install conda and pip
packages.

• New but powerful tool: pixi
• https://pixi.sh/
• excellent conda alternative for research applications (anaconda is only
free for education or small organisations)

• pixi stores its files in the (hidden) subfolder '.pixi'

Example:

$ pixi init # create pixi environment in this folder
$ pixi add python==3.13 numpy # request python3.12 and numpy package
$ pixi shell # activate pixi environment
<pixi-env> $ python
Python 3.13.0 | packaged by conda-forge | (main, Nov 27 2024, 19:18:26)
>>> import numpy
>>>

269

https://pixi.sh/


∗For Anaconda users: interaction conda and pip

Anaconda provides packages and (conda) environments
through conda.

• Avoid mixing pip installs with conda installs, i.e.
• if conda can install all the required packages, then use that

• if conda cannot install the required package, either
• first install all that is needed/available from conda
• then install the desired packages through pip that conda
cannot provide

• afterwards, do not use conda again to install more
packages.

or (if possible)
• install all packages from pip

See also https://www.anaconda.com/blog/using-pip-in-a-conda-environment

270

https://www.anaconda.com/blog/using-pip-in-a-conda-environment


Typing



Dynamic Typing

Python derives flexibility from being dynamically typed:

def add(x, y):
"""Type of x and y is dynamic."""
print(f"Type of {x=} is {type(x)}")
return x + y

print(add(10, 20))
print(add("Hello", " World"))

Output:

Type of x=10 is <class 'int'>
30
Type of x='Hello' is <class 'str'>
Hello World

271



Duck typing — behaviour more important than type

def print_length(x):
"""Works for every object with __len__ method."""
print(f"The object of type {type(x)} has length {len(x)}.")

class Len42class:
"""A class where every object has length 42."""
def __len__(self):

return 42

x = [10, 20]
print_length(x) # list has length
y = Len42class() # y has length
print_length(y)

Output:

The object of type <class 'list'> has length 2.
The object of type <class '__main__.Len42class'> has length 42.

272



Static typing

• More formal “static typing” information can be useful:
• better (machine readable) documentation of types
• static type checking may discover mistakes
• editors/IDEs can use static type information
• potential execution speed-up (see cython)

• Typing module for type annotation introduced in Python
3.5

• Relevant PEPs: PEP483 and PEP484
• More concise introduction to typing realpython.com

273

https://docs.python.org/3/library/typing.html
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://realpython.com/python-type-checking/#static-type-checking


Type annotation example

• Function type annotation: expect str and return str

1 def hello(name: str) -> str:
2 """Given a name, return 'Hello ' + name."""
3 return "Hello " + name
4

5 hello("Paul") # correct function call
6 hello(42) # incorrect type

• Can use mypy to do static type analysis:

typing-static1.py:6: error: Argument 1 to "hello" has
incompatible type "int"; expected "str" [arg-type]↪→

Found 1 error in 1 file (checked 1 source file)

274



Gradual typing

• gradual introduction of type annotations is possible: can
introduce type annotation for some functions only

• effective to annotate most heavily used functions first
• they are called from other places
• accidental calls with incorrect types can be discovered

275



Gradual typing example

•1 def mysum(a: int, b: int) -> int:
2 """Expect two ints and return the sum."""
3 return a + b
4

5 def f_without_types(x):
6 """Return x. A function without type annotation."""
7 return x
8

9 print(mysum(2, 3))
10 print(mysum("Hello", 2023)) # will not work

• Can use mypy to do static type analysis:

typing-gradual.py:10: error: Argument 1 to "mysum" has
incompatible type "str"; expected "int" [arg-type]↪→

Found 1 error in 1 file (checked 1 source file)

276



Type annotation summary

Typing in Python

• no need to specify types in Python (“dynamically typed”)
• we can provide type annotation to hint at the expected
type

• but Python interpreter does not check/enforce the type

Why (gradual) type annotations?

• contributes to documentation
• external tools can check typing (such as mypy)
• editors may use the information (e.g. for autocompletion)

277



Pandas



Pandas

• de-facto standard in data science (and maschine learning)
• builds on numpy
• convenient handling of multi-dimensional data sets
• important data structures: Series and DataFrame

• excellent import and export functionality, including csv
and xlsx.

• many, many, many parameters, functions, tools (Can’t
know them all)

• for data cleaning and data exploration typically used in
Juptyter Notebook

See https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/
17-pandas.html

278

https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/17-pandas.html
https://fangohr.github.io/introduction-to-python-for-computational-science-and-engineering/17-pandas.html


Testing



Testing - context

• Writing software is easy – debugging it is hard
• When debugging, we always test
• Later code changes may require repeated testing
• Best to automate testing by writing functions that contain
tests

• A big topic: here we provide some key ideas
• We use Python extension tool py.test, see pytest.org

279

http://pytest.org


Example 1: mixstrings.py

def mixstrings(s1, s2):
"""Given two strings s1 and s2, create and return a new
string that contains the letters from s1 and s2 mixed:
i.e. s[0] = s1[0], s[1] = s2[0], s[2] = s1[1],
s[3] = s2[1], s[4] = s1[2], ...
If one string is longer than the other, the extra
characters in the longer string are ignored.

Example:

>>> mixstrings("Hello", "12345")
'H1e2l3l4o5'
"""
# what length to process
n = min(len(s1), len(s2))
# collect chars in this list
s = []

280



for i in range(n):
s.append(s1[i])
s.append(s2[i])

return "".join(s)

def test_mixstrings_basics():
assert mixstrings("hello", "world") == "hweolrllod"
assert mixstrings("cat", "dog") == "cdaotg"

def test_mixstrings_empty():
assert mixstrings("", "") == ""

def test_mixstrings_different_length():
assert mixstrings("12345", "123") == "112233"
assert mixstrings("", "hello") == ""

if __name__ == "__main__":
test_mixstrings_basics()
test_mixstrings_empty()
test_mixstrings_different_length()

281



• tests are run if mixstrings.py is the top-level (tests are
not run if file is imported)

• no output if all tests pass (“no news is good news”)

• More common approach than calling tests from __main__:
use py.test.

282



py.test (also known as pytest)

We can use the standalone program py.test to run test functions in any
python program:

• py.test will look for functions with names starting with test_

• and execute each of those as one test.
• Example:
$> py.test -v mixstrings.py
============================= test session starts ===========
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 3 items

mixstrings.py::test_mixstrings_basics PASSED [ 33%]
mixstrings.py::test_mixstrings_empty PASSED [ 66%]
mixstrings.py::test_mixstrings_different_length PASSED [100%]
============================== 3 passed in 0.01s ============

• This works, even if the file to be tested (here mixstrings.py) does not refer to
pytest at all.

283



*Calling pytest from a python file

If desired, one can trigger execution of pytest from python file.

Example:

import pytest

<parts of the file missing here>

if __name__ == "__main__":
pytest.main(["-v", "mixstrings.py"])

However, it is much more common to use py.test to discover and execute the tests
(often across multiple files).

284



Advanced Example 3: factorial.py

For reference: In this example, we check that an exception is raised if a particular
error is made in calling the function.

import math
import pytest

def factorial(n):
""" Compute and return n! recursively.
Raise ValueError if n is negative or non-integer.

>>> from myfactorial import factorial
>>> [factorial(n) for n in range(5)]
[1, 1, 2, 6, 24]
"""

if n < 0:
raise ValueError(f"n should be > 0 but n={n}")

285



if isinstance(n, int):
pass

else:
raise TypeError(f"n must be integer but is {type(n)}.")

# actual calculation
if n == 0:

return 1
else:

return n * factorial(n - 1)

def test_basics():
assert factorial(0) == 1
assert factorial(1) == 1
assert factorial(3) == 6

def test_against_standard_lib():
for i in range(20):

assert math.factorial(i) == factorial(i)

def test_negative_number_raises_error():

286



with pytest.raises(ValueError): # this will pass if
factorial(-1) # factorial(-1) raises

# a ValueError

def test_noninteger_number_raises_error():
with pytest.raises(TypeError):

factorial(0.5)

Output from successful testing:

$> py.test -v factorial.py
============================= test session starts ===============
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 4 items

factorial.py::test_basics PASSED [ 25%]
factorial.py::test_against_standard_lib PASSED [ 50%]
factorial.py::test_negative_number_raises_error PASSED [ 75%]
factorial.py::test_noninteger_number_raises_error PASSED [100%]
============================== 4 passed in 0.02s ================

287



Notes on pytest

• Normally, we call py.test from the command line
• Either give filenames to process (will look for functions starting with
test in those files)

• or let py.test autodiscover all files (!) starting with test to be
processed.

Example:

============================= test session starts ==============
platform darwin -- Python 3.10.2, pytest-7.1.2
collected 7 items

mixstrings.py::test_mixstrings_basics PASSED [ 14%]
mixstrings.py::test_mixstrings_empty PASSED [ 28%]
mixstrings.py::test_mixstrings_different_length PASSED [ 42%]
factorial.py::test_basics PASSED [ 57%]
factorial.py::test_against_standard_lib PASSED [ 71%]
factorial.py::test_negative_number_raises_error PASSED [ 85%]
factorial.py::test_noninteger_number_raises_error PASSED [100%]
============================== 7 passed in 0.01s =============== 288



Testing summary

• Unit testing, integration testing, regression testing, system
testing

• absolute key role in modern software engineering: always
write (some) tests for your software

• bigger projects have ”continuous integration testing”:
automatic execution of tests on any change

• ”eXtreme Programming” (XP) philosophy suggests to write
tests before you write code (”test-driven-development
(TDD)”)

Executable py.test and python module pytest are not part of
the standard python library.

289



Symbolic Python (sympy)



Symbolic Python (sympy)

What?

• symbolic algebra - computing with variables not numbers
(like Mathematica, SageMath, Wolfram Alpha, other, ...)

Why?

• Use symbolic computation before moving to numerical
calculations to avoid mistakes

• and to simplify expression as much as possible.
• Write computer code (or LaTeX) automatically from sympy
• Or use from Python using sympy.lambdify

290



Why symbolic python?

• sympy is not the only option - other packages may well be
faster/know more mathematics, but

• sympy connects well to Python ecosystem of
computational science tools

• free and open source
• scriptable: can integrate into automatic workflows
• very powerful

291



Symbolic Python - basics

>>> import sympy
>>> x = sympy.Symbol('x') # define symbolic
>>> y = sympy.Symbol('y') # variables
>>> x + x
2*x
>>> t = (x + y)**2
>>> print(t)
(x + y)**2
>>> sympy.expand(t)
x**2 + 2*x*y + y**2
>>> sympy.pprint(t) # PrettyPRINT

2
(x + y)
>>> sympy.printing.latex(t) # Latex export
'\\left(x + y\\right)^{2}'

292



Substituting values and numerical evalution

>>> t
(x + y)**2
>>> t.subs(x, 3) # substituting variables
(y + 3)**2 # or values
>>> t.subs(x, 3).subs(y, 1)
16
>>> n = t.subs(x, 3).subs(y, sympy.pi)
>>> print(n)
(3 + pi)**2
>>> n.evalf() # EVALuate to Float
37.7191603226281
>>> p = sympy.pi
>>> p
pi
>>> p.evalf()

293



3.14159265358979
>>> p.evalf(47) # request 47 digits
3.1415926535897932384626433832795028841971693993

294



Working with infinity

>>> from sympy import limit, sin, oo
>>> limit(1/x, x, 50) # what is 1/x if x --> 50
1/50
>>> limit(1/x, x, oo) # oo is infinity
0
>>> limit(sin(x) / x, x, 0)
1
>>> limit(sin(x)**2 / x, x, 0)
0
>>> limit(sin(x) / x**2, x, 0)
oo

295



Taylor series

>>> from sympy import series
>>> taylorseries = series(sin(x), x, 0)
>>> taylorseries
x - x**3/6 + x**5/120 + O(x**6)
>>> sympy.pprint(taylorseries)

3 5
x x

x - -- + --- + O(x**6)
6 120

>>> taylorseries = series(sin(x), x, 0, n=10)
>>> sympy.pprint(taylorseries)

3 5 7 9
x x x x

x - -- + --- - ---- + ------ + O(x**10)
6 120 5040 362880

296



Integration

>>> from sympy import integrate
>>> a, b = sympy.symbols('a, b')
>>> integrate(2*x, (x, a, b))
-a**2 + b**2
>>> integrate(2*x, (x, 0.1, b))
b**2 - 0.01
>>> integrate(2*x, (x, 0.1, 2))
3.99000000000000

297



Solving equations

Finally, we can solve non-linear equations, for example:

>>> (x + 2)*(x - 3) # define quadratic equation
# with roots x=-2, x=3

(x - 3)*(x + 2)
>>> r = (x + 2)*(x - 3)
>>> r.expand()
x**2 - x - 6
>>> sympy.solve(r, x) # solve r = 0
[-2, 3] # solution is x = -2, 3

298



Lambdify sympy expressions

>>> from sympy import sin, cos, symbols, lambdify
>>> import numpy as np
>>> x = symbols('x')
>>> symb = sin(x) + cos(x)
>>> symb
sin(x) + cos(x)
>>> f = lambdify(x, symb, 'numpy')
>>> f(0)
1.0
>>> f(np.linspace(0, 1, 10))
array([1. , 1.10471614, 1.19580783, 1.27215164,
1.33280603, 1.37702295, 1.40425706, 1.4141725 ,
1.40664697, 1.38177329])

Workflow: Create sympy expressions, then lambdify them to execute faster.

299



Sympy summary

• Sympy is purely Python based
• fairly powerful (although better open source tools are
available if required)

• we should use computers for symbolic calculations
routinely alongside pen and paper, and numerical
calculations

• can produce LATEX output
• can produce C and Fortran code (and wrap this up as a
Python function automatically (“autowrap”))

300



commit f0cda3fb3cbb9e6a0eada25c796a9762a37b8110
Author: Hans Fangohr <fangohr@users.noreply.github.com>
Date: Mon Dec 9 07:39:20 2024 +0100

include type annotation slides

300


	Introduction Computing & Computational Engineering
	First steps with Python
	Functions
	About Python
	Introspection (dir)
	Conditionals, if-else
	Style guide for Python code
	Using modules
	Sequences
	Loops
	Reading and writing files
	str, repr and eval
	Print
	String formatting
	Default function arguments
	Keyword function arguments
	List comprehension
	Optimisation
	Higher Order Functions
	Common Computational Tasks
	Scientific Python
	Optimisation
	Dictionary
	Computing derivatives numerically
	Root finding
	Plotting data from csv file
	Raising exceptions
	Writing modules
	Jupyter notebook
	Numpy
	Matplotlib
	Curve fitting
	Virtual Environments venv
	Installing python packages with pip
	Typing
	Pandas
	Testing
	Symbolic Python (sympy)

